
Structural Logical Relations with
Case Analysis and Equality Reasoning

Ulrik Rasmussen
DIKU, University of Copenhagen

dolle@diku.dk

Andrzej Filinski
DIKU, University of Copenhagen

andrzej@diku.dk

Abstract
Formalizing proofs by logical relations in the Twelf proof
assistant is known to be notoriously difficult. However, as
demonstrated by Schürmann and Sarnat [In Proc. of 23rd
Symp. on Logic in Computer Science, 2008] such proofs
can be represented and verified in Twelf if done so using a
Gentzen-style auxiliary assertion logic which is subsequently
proved consistent via cut elimination.

We demonstrate in this paper an application of the
above methodology to proofs of observational equivalence
between expressions in a simply typed lambda calculus
with a call-by-name operational semantics. Our use case
requires the assertion logic to be extended with reasoning
principles not present in the original presentation of the
formalization method. We address this by generalizing the
assertion logic to include dependent sorts, and demonstrate
that the original cut elimination proof continues to apply
without modification.

Categories and Subject Descriptors F.3.3 [Logics and
Meanings of Programs]: Studies of Program Constructs—
Type structure; F.4.1 [Mathematical Logic and Formal Lan-
guages]: Mathematical Logic—Lambda calculus and related
systems, Proof theory

Keywords logical frameworks, logical relations, Twelf, cut
elimination, observational equivalence

1. Introduction
Logical relations are a proof technique frequently employed
in the study of programming languages based on typed
lambda calculi. Apart form Tait’s original normalization
argument [14], they have been used to prove several prop-
erties, including, for example, completeness of equivalence
checking [2], or observational equivalence of expressions [5].

The Twelf proof assistant [7] is a meta-logical framework
for representing and verifying meta-theorems for deductive
systems represented in the LF logical framework [3]. As LF
provides a very lightweight way of representing binders and

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. Copyrights for components of this work owned by
others than the author(s) must be honored. Abstracting with credit
is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.
LFMTP ’13, September 23, 2013, Boston, MA, USA.
Copyright is held by the owner/author(s). Publication rights licensed
to ACM.
ACM 978-1-4503-2382-6/13/09. . . $15.00.
http://dx.doi.org/10.1145/2503887.2503891

variables via higher-order abstract syntax, Twelf is especially
well-suited for mechanizing the meta-theory of programming
languages, as long as meta-theorems can be expressed in
the form of ∀∃-statements. This restriction has still allowed
a surprisingly large body of proofs to be represented in
Twelf, including, for example, type-safety of the Standard
ML programming language [6]. However, proofs by logical
relations have been notoriously difficult to formalize, due to
their relation-preserving definition at function types which is
incompatible with the restriction of meta-theorems to only
∀∃-statements [4].

1.1 Structural logical relations
The technique of structural logical relations [13] enables
the formalization of certain proofs by logical relations by
explicitly representing and reasoning about an auxiliary logic,
called the assertion logic. Certain core parts of the proofs are
then represented in this logic, which is subsequently proved
consistent via cut-elimination. The technique additionally
gives some interesting insight into the structure of a logical-
relations based proof, as it defines a clear separation between
the different levels of reasoning: induction lives exclusively on
the meta-level (Twelf), while implication and object-language
judgments live in the assertion logic.

We will illustrate the general methodology by an example.
Consider the following language defined as a Twelf signature:

tp : type.
tbool : tp.
tarrow : tp -> tp -> tp.

exp : type.
true : exp.
false : exp.
app : exp -> exp -> exp.
lam : (exp -> exp) -> exp.

of : exp -> tp -> type.
%{ standard typing rules ... }%

eval : exp -> exp -> type.
eval/app : eval E1 (lam E0)

-> eval (E0 E2) V
-> eval (app E1 E2) V.

%{ other standard evaluation rules ... }%

Suppose that we wanted to prove that every ground-typed
expression terminate (i.e., has an evaluation derivation),
which we would express as the following meta-theorem:

term : of E tbool -> eval E V -> type.
%mode term +OP -EP.

However, we cannot prove this by simple induction over the
typing derivation, but must use a logical-relations argument,
which is problematic to represent directly in Twelf. Instead,
we introduce an auxiliary logic with the following definition
of formulas and judgments:
form : type.
forall : (exp -> form) -> form.
exists : (exp -> form) -> form.
==> : form -> form -> form. %infix right 1 ==>.
@eval : exp -> exp -> form.

pf : form -> type.

In the above, the pf type family represents the proof
judgment for first-order logic. E.g., we could define pf
as a natural deduction system, formulating the rules for
implication and conjunction as follows:
forallI : ({x:exp} pf (A x)) -> pf (forall A).
forallE : {x:exp} pf (forall A) -> pf (A x).
existsI : {x:exp} pf (A x) -> pf (exists A).
existsE : pf (exists A)

-> ({x:exp} pf (A x) -> pf C)
-> pf C.

impI : (pf A -> pf B) -> pf (A ==> B).
impE : pf (A ==> B) -> pf A -> pf B.

The rules for the connective @eval should be introduction
rules only, and should be defined such that @eval charac-
terizes evaluation. For example, we may formulate a set of
introduction rules similar in structure to the rules for the
eval judgment:
@eval/app : pf (@eval E1 (lam E0))

-> pf (@eval (E0 E2) V)
-> pf (@eval (app E1 E2) V).

%{ remaining rules elided ... }%

The logical relation that we need for our proof is then
expressed in terms of the formulas of the assertion logic. For
our termination proof, we might define it as follows:
lr : {T:tp} (exp -> form) -> type.
lr/bool : lr tbool ([e] exists [v] @eval e v).
lr/arr : lr T2 R2 -> lr T0 R0

-> lr (tarrow T2 T0)
([e] forall [e2]

R2 e2 ==> R0 (app e e2)).

Belonging to the logical relation at base type implies by
definition an assertion-logic proof of termination.

We then prove the fundamental theorem for our logical
relation, namely that all well-typed terms satisfy it:
fund : of E T -> lr T R -> pf (R E) -> type.
%mode fund +OP +LP -PF.

From this, an assertion-logic proof of termination at boolean
types follows as a special case:
bool-eval : of E bool

-> pf (exists [v] @eval E v) -> type.
%mode bool-eval +OP -PF.

At this point, we could in principle stop and declare that
we have proved that all well-typed expressions terminate.
However, this requires us to trust several aspects of the
proof. First of all, we have to believe that a derivation of
pf (exists [v] @eval E v) indeed implies the existence of
a derivation of eval E V for some V. Assertion-logic proofs
are not necessarily on normal form, e.g., a derivation of
pf (exists [v] @eval E v) could possibly end in a use of

impE operating on proofs of much larger formulas, which
significantly complicates a soundness proof.

Instead, we define an alternative proof judgment:

pfn : form -> type.

The pfn system is defined to be similar to pf, but restricted
such that only proofs on normal form can be expressed. This
allows the following extraction theorem to be proved by
straightforward induction over derivations:

ext : pfn (exists [v] @eval E v) -> eval E V -> type.
%mode ext +PF -EP.

It is not practical to construct normalized proof deriva-
tions directly in the proof of the fundamental theorem, how-
ever, so we still have to prove the following normalization
theorem:

norm : pf A -> pfn A -> type.
%mode norm +PF -PF’.

Our main theorem can now be formulated and verified by
the Twelf meta-theorem prover:

term : of E bool -> eval E V -> type.
%mode term +OP -EP.
- : term OP EP

<- bool-eval OP PF
<- norm PF PFN
<- ext PFN EP.

Interestingly, the normalization proof for the assertion logic
can also be considered a termination proof, but for a logic
which admits a structural proof.

We refer to the original presentation of structural logical
relations [13] for a more detailed example of the formal-
ization of proofs of weak normalization and completeness
of equivalence checking, using the same proof structure as
sketched above, and with a Gentzen-style sequent calculus
for the assertion logic. Showing that assertion-logic proofs
can be normalized thus reduces to showing that cut can be
eliminated from proofs, which has previously been formalized
in Twelf by Pfenning [8].

This methodology works well for formalizing proofs about
a typed lambda calculus with only application and abstrac-
tion. However, the method does not generalize in a straight-
forward way to the formalization of meta-theory for even
slightly more expressive programming languages, such as, for
example, a language with natural numbers and case expres-
sions.

The reason is that core parts of the proof of the fundamen-
tal theorem must be conducted in the assertion logic, which
needs to be extended with additional reasoning principles
when working with a more expressive language. Specificaly,
in the termination example, the mathematical proof for case-
expressions distinguishes between the two possible evaluation
results of a base-typed subexpression, requiring a form of
case-analysis principle in the assertion logic as well. However,
we cannot just add arbitrary rules to the assertion logic, as
we must be able to prove that proofs normalize. In the case
of a Gentzen-style calculus, this means that we must not
destroy the cut-admissibility property.

1.2 Contributions
The original presentation of the technique of structural logical
relations was concerned only with the formalizations of weak
normalization and equivalence checking for a minimal typed
λ-calculus, using a similarly minimal assertion logic. In this

paper, we will apply the technique to a proof of observational
equivalence for expressions in a simply typed λ-calculus with
a call-by-name operational semantics. It turns out that the
assertion logic needs to be extended with several reasoning
principles when scaling the technique to proofs about pro-
gramming languages. Specifically, adding inhabitants to base
types, together with elimination constructs, calls for an as-
sertion logic with reasoning principles for doing case analysis
and equality reasoning for derivations. We demonstrate how
to achieve this while preserving normalizability of the asser-
tion logic, by extending it with quantification over objects in
a dependent theory of sorts. Interestingly, the structural cut-
elimination proof of Pfenning [8] continues to apply without
requiring modification. We further add structural witnesses
for doing case analysis on objects, and show how to formulate
the theory of sorts to accommodate equality reasoning. The
resulting system further distinguishes the levels of reasoning
in a proof by logical relations: induction lives on the meta-
level, implication and case analysis live in the assertion logic,
and equality reasoning and object-language judgments live
in the underlying theory of sorts.

The full Twelf proofs using the methodology presented
here can be found in the electronic appendix [11].

2. Extended structural logical relations
In this section, we present an extension of the methodology
of structural logical relations which admits more advanced
reasoning principles in the assertion logic. The method is best
described in the context of a concrete example, which will
be the formalization of a soundness proof of an equational
reasoning system for a simple programming language.

The programming language that we work with is defined
in Figure 1, and is a simply typed lambda calculus with a
call-by-name operational semantics, natural numbers, a case
construct, and possibility of failure. In Figure 4, we have
defined the syntactic equational reasoning system for which
we will prove soundness. Note that exchange is implicitly
assumed for contexts Γ, and that when writing Γ, x : τ , we
tacitly imply that x does not occur in the domain of Γ. We
will write dom(Γ) for the domain of Γ. Given an expression
e, we will write FV(e) for the set of free variables of e. A
variable x is free if it does not occur as descendent of a binder
for x.

The Twelf representation of the object language and the
equational reasoning system is straightforward, and we will
therefore only show some representative parts of it:
nat : type
z : nat.
s : nat -> nat.

tp : type.
tnat : tp.
tarrow : tp -> tp -> tp.

exp : type.
%{ declarations elided }%

eval : exp -> exp -> type.
eval/app : eval E1 (lam E0) -> eval (E0 E2) V

-> eval (app E1 E2) V.
%{ remaining declarations elided }%

of : exp -> tp -> type.
of/lam : ({x} of x T2 -> of (E0 x) T0)

-> of (lam E0) (tarrow T2 T0).
%{ remaining declarations elided }%

sim : exp -> exp -> tp -> type.
sim/lam : ({x} sim x x T2

-> sim (E0 x) (E0’ x) T0)
-> sim (lam E0) (lam E0’) (tarrow T2 T0).

%{ remaining declarations elided }%

The representation is adequate, and we will assume the
existence of a compositional translation p·q from our original
definitions to LF types and terms. For example, we have
pExpq = exp and papp e1 e2q = app pe1q pe2q, where the
typewriter typeface is used to denote LF expressions.

Our assertion logic is presented in Figure 2, and is
formulated as a Gentzen-style sequent calculus as in the
original presentation of the methodology. The definition
deserves some explanation: A derivation of a judgment of
the form Ξ|∆ `c A is an assertion-logic proof of the validity
of the formula A, with parameters from an ordered mapping
from meta-variables to sorts Ξ, and using hypothetical
assumptions from an unordered set of hypotheses ∆. The
proof sequent is further parameterized by a cut tag c, which
denotes whether the proof is normalized (i.e., cut-free); •
is the tag for potentially cutful proofs; ◦ is the tag for cut-
free proofs. The important difference between the original
methodology and ours is that we do not add judgments
as atomic formulas to the assertion logic (e.g., the @eval
formula from the introduction), but instead quantify over
dependent sorts whose objects represent the object language
derivations that we are interested in. The logic quantifies
over four different sorts, namely expressions Exp; naturals
Nat; binders (Exp)Exp; and data derivations of the form
 D
– the latter is our means of representing object language
judgments, which we will get back to in a moment. The
definition also mentions a set of unspecified rules related to
the structural witness predicate Data+, whose rules will also
be defined later when we specify the rules for the judgment

 D.

It is tacitly assumed that meta-variables may occur
anywhere in objects, e.g., we may form an object of the
form app x α, where x is an expression-variable and α
is a meta-variable standing for some arbitrary expression.
In the introduction rule for existential quantification and
the elimination rules for universal quantification, a concrete
object from the appropriate sort must be substituted for a
meta-variable. Here, we require not that it is well-formed, but
that its LF encoding in some signature Σ is a canonical form
at the appropriate LF type family. We will take Σ to be the
LF representation of our object language syntax as well as the
judgment
 D. For example, if Ξ = ·, α : Exp, then we would
have pΞq L̀F

Σ papp α failq : exp, but not pΞq L̀F
Σ s α : nat.

The judgment
 D denotes proofs of data formulas D in a
data representation logic which is defined in the next section.
The logic is used to encode the object language judgments
we are interested in. Data formulas D may contain objects
belonging to the Exp sort as well as meta-variables standing
for expressions. This effectively equips the assertion logic
with dependent sorts.

The Twelf representation of the assertion logic is formu-
lated as follows:

% Data formulas and repr. logic judgment.
dform : type.
data : dform -> type.

tag : type.
cutful : tag.
cutfree : tag.

Types: τ :: Tp ::= nat | τ1 ⇀ τ2
Naturals: n :: Nat ::= z | s n
Expressions: e, v :: Exp ::= x | app e1 e2 | lam x. e0 | num n | case(e0, e1, x. e2) | fail
Binders: b :: (Exp)Exp ::= x. e0

Evaluation: E :: e ⇓ v :

e1 ⇓ lam x. e0 e0[e2/x] ⇓ v
app e1 e2 ⇓ v

e_app
lam x. e0 ⇓ lam x. e0

e_lam
num n ⇓ num n

e_num

e0 ⇓ num z e1 ⇓ v
case(e0, e1, x. e2) ⇓ v

e_case0
e0 ⇓ num (s n) e2[num n/x] ⇓ v

case(e0, e1, x. e2) ⇓ v
e_case1

Typing: T :: Γ ` e : τ :

Γ ` e1 : τ2 ⇀ τ0 Γ ` e2 : τ2
Γ ` app e1 e2 : τ0

t_app
Γ, x : τ2 ` e0 : τ0

Γ ` lam x. e0 : τ2 ⇀ τ0
t_lam

Γ ` num n : nat
t_num

Γ ` e0 : nat Γ ` e1 : τ Γ, x : nat ` e2 : τ
Γ ` case(e0, e1, x. e2) : τ

t_ifz
Γ ` fail : τ

t_fail

Figure 1. Simply typed λ-calculus.

Cut tag: c :: Tag ::= • | ◦
Formulas: A,B,C :: Form ::= > | ∀α : Exp. A | ∀α : Nat. A | ∃α : (
 D). A | A ∨B | A ∧B | A ⊃ B

| Data+(D : D)
Parameters: Ξ :: Parms ::= · | Ξ, α : Exp | Ξ, α : Nat | Ξ, α : (Exp)Exp | Ξ, α : (
 D)
Assumptions: ∆ :: Assm ::= · | ∆, A
Data formulas: D :: DForm (Defined in Figure 3.)
Data judgment: D ::
 D (Defined in Figure 3.)
Sequents: S :: Ξ|∆ `c A :

Initial sequent and cut:

Ξ|∆, A `c A
ax

Ξ|∆ `c A Ξ|∆, A `c C
Ξ|∆ `• C

cut

Right rules:

Ξ|∆ `c >
topR

Ξ|∆, A `c B
Ξ|∆ `c A ⊃ B

impR
Ξ|∆ `c A Ξ|∆ `c B

Ξ|∆ `c A ∧B
andR

Ξ|∆ `c A
Ξ|∆ `c A ∨B

orR1
Ξ|∆ `c B

Ξ|∆ `c A ∨B
orR2

Ξ, α : Exp|∆ `c A
Ξ|∆ `c ∀α : Exp. A

allR_e
Ξ, α : Nat|∆ `c A

Ξ|∆ `c ∀α : Nat. A
allR_n

Ξ|∆ `c A[D/α] pΞq L̀F
Σ pDq : p
 Dq

Ξ|∆ `c ∃α : (
 D). A
exiR_d

(+ right-rules for structural witness. Defined in Section 2.2.)
Left rules:

Ξ|∆, A ⊃ B `c A Ξ|∆, A ⊃ B,B `c C
Ξ|∆, A ⊃ B `c C

impL
Ξ|∆, A ∧B,A `c C

Ξ|∆, A ∧B `c C
andL1

Ξ|∆, A ∧B,B `c C
Ξ|∆, A ∧B `c C

andL2

Ξ|∆, A ∨B,A `c C Ξ|∆, A ∨B,B `c C
Ξ|∆, A ∨B `c C

orL
Ξ|∆, ∀α : Exp. A,A[e/α] `c C pΞq L̀F

Σ peq : exp
Ξ|∆, ∀α : Exp. A `c C

allL_e

Ξ|∆, ∀α : Nat. A,A[n/α] `c C pΞq L̀F
Σ pnq : nat

Ξ|∆, ∀α : Nat. A `c C
allL_n

Ξ, α′ : (
 D)|∆, ∃α : (
 D). A,A[α′/α] `c C
Ξ|∆, ∃α : (
 D). A `c C

exiL_d

(+ left-rule for structural witness. Defined in Section 2.2.)
LF translation of parameters:

p·q = · pΞ, α : Expq = pΞq,xα:exp
pΞ, α : (Exp)Expq = pΞq,xα:exp -> exp pΞ, α : (
 D)q = pΞq,xα:data pDq

Figure 2. Assertion logic.

form : type.
top : form.
forall_e : (exp -> form) -> form.
forall_n : (nat -> form) -> form.
exists_d : (data D -> form) -> form.
==> : form -> form -> form. %infix right 1 ==>.
\/ : form -> form -> form. %infix left 2.
/\ : form -> form -> form. %infix left 3.
data+ : data D -> form.

hyp : form -> type.
% Proof judgment:
conc : tag -> form -> type.
%{ rules elided }%

Note that in the above, assumptions are modeled using the
hyp type family to distinguish assumptions from derivations.
For example, the left and right rules for implication look as
follows:
impr : (hyp F -> conc T G)

-> conc T (F ==> G).
impl : conc T F -> (hyp G -> conc T C)

-> (hyp (F ==> G) -> conc T C).

Parameter contexts Ξ are represented directly using the LF
context, which is reflected in the higher-order representation
of the quantifiers. Our requirement that concrete objects must
correspond to well-typed canonical LF terms is also directly
represented; e.g., the left-rule for universal quantification
over expressions looks as follows:
foralll_e : {e:exp} (hyp (A e) -> conc T C)

-> (hyp (forall_e A) -> conc T C).

Case-analysis principles are provided via structural wit-
nesses, which are proofs of the atomic predicate Data+. The
exact rules are yet to be specified, but will provide a way to
observe the structure of certain representation-logic deriva-
tions within assertion-logic proofs. To be able to reason from
the expression equalities that follow from each possible case,
we need to structure the representation logic carefully; this
will be covered in the next section.

2.1 Representation logic
In Twelf, equality reasoning is often done implicitly via
unification of LF variables when pattern-matching on possible
cases. More important, impossible cases are in most cases
automatically ruled out by the coverage-checking algorithm
(although in general the problem is undecidable), and need
not be covered in proofs. However, any case-analysis rules
we add to our assertion logic will not have access to any
meta-level facilities of Twelf, and must therefore reason
from explicit syntactic equality proofs whose structure we
cannot observe. When we cannot observe the structure of
an equality proof, we have to give it meaning in some other
way, namely by adding conversion rules which allows us to
convert derivations involving equal objects.

The representation logic, defined in Figure 3, gives us a
way to represent object language judgments (in this case, the
evaluation judgment) while enabling such equality reasoning.
Specifically, it allows equality proofs to be inserted at any
point in a derivation, allowing equality conversions to be
carried out without relying on unification of meta-variables
by observing the structure of equality proofs. We write all
formulas of this logic with banana brackets L · M to visually
distinguish them from the original judgments they encode.
Note how all syntactic constraints in the original rules of

the evaluation judgment are expressed via explicit equality
premises in the representation logic – this is indeed the
main technical feature of the representation logic, and all
evaluation rules can be derived mechanically from their
original definitions. There is a large number of rules for
reasoning about equalities, so only a few representatives are
shown. Note that we also identify absurd equalities via L void M,
from which any equality can be derived – and hence also
any evaluation via one of the rules that only have equality
premises, such as de_num.

The representation logic is represented as follows in Twelf:

dform : type.
dvoid : dform.
dqe : exp -> exp -> dform.
dqe2 : (exp -> exp) -> (exp -> exp) -> dform.
deval : exp -> exp -> dform.

data : dform -> type.
deval/app : data (deval E1 (lam E0))

-> data (deval (E0 E2) Ev)
-> data (dqe X1 (app E1 E2))
-> data (dqe X2 Ev)
-> data (deval X1 X2).

%{ remaining rules elided }%

The logic is sound and complete with respect to the original
definition of evaluation, i.e., we can prove the following meta-
theorems:

Lemma 1 (Isomorphism). For any expressions e,e′, we have
e ⇓ e′ ⇐⇒
 L e ⇓ e′ M.

emb : eval E E’ -> data (deval E E’) -> type.
%mode emb +EP -DP.

unemb : data (deval E E’) -> eval E E’ -> type.
%mode unemb +DP -EP.

Proof. By induction over derivations. The “if” direction
requires mutual induction with a soundness proof for equality
derivations as well.

Note that unlike the assertion logic, all representation-
logic derivations are on normal form and need not be
normalized as part of the proof for unemb.

2.2 Case analysis
It remains to define a case-analysis principle for the assertion
logic, such that we can express proofs that consider all the
ways in which a given representation-logic derivation could
have been constructed. To do so, we define a set of rules for
the Data+ predicate, which acts as a witness for the structure
of a given derivation.

Due to the presence of judgments-in-judgments, the paper
definition of the rules are rather cluttered and spacious,
so we will only show a representative part of their Twelf
representations. The idea is to introduce a right-rule for each
possible representation-logic rule that we want to consider
in case-analysis proofs. For our purposes, it suffices to add
five right-rules, one for each de-prefixed rule, which enables
case analysis on evaluation derivations. For example, the
right-rule for de_app looks as follows:

data+R_app :
conc T (data+ DP1)
-> conc T (data+ DP2)
-> conc T (data+ (deval/app DP1 DP2 DP3 DP4)).

Data formulas: D :: DForm ::= L void M | L e ?= e′ M | Lx. e ?=2 x′. e′ M | L e ⇓ v M
Judgment: D ::
 D :

Evaluation:

 L e1

?= lam x. e0 M
 L e2
?= lam x. e0 M

 L e1 ⇓ e2 M
de_lam

 L e1
?= num n M
 L e2

?= num n M

 L e1 ⇓ e2 M

de_num

 L e′1 ⇓ lam x. e0 M
 L e0[e′2/x] ⇓ v M
 L e1
?= app e′1 e′2 M
 L e2

?= v M

 L e1 ⇓ e2 M
de_app

 L e′0 ⇓ num z M
 L e′1 ⇓ v M
 L e1
?= case(e′0, e′1, x. e′2) M
 L e2

?= v M

 L e1 ⇓ e2 M
de_case0

 L e′0 ⇓ num (s n′) M
 L e′2[num n′/x] ⇓ v M
 L e1
?= case(e′0, e′1, x. e′2) M
 L e2

?= v M

 L e1 ⇓ e2 M
de_case1

Equality and falsehood (representative subset):

 L void M

 L e
?= e′ M

dqe_void

 L e

?= e M
dqe_id

 L e
?= e′ M

 L e′
?= e M

dqe_sym

 L e

?= e′ M
 L e′
?= e′′ M

 L e
?= e′′ M

dqe_trans

 Lx. e0
?=2 x′. e′0 M
 L e

?= e′ M

 L e0[e/x] ?= e′0[e′/x′] M
dqe_subst

 L lam x. e0
?= lam x′. e′0 M

 Lx. e0
?=2 x′. e′0 M

dqe_cvrs_lam

 L app e1 e2
?= app e′1 e′2 M

 L e1
?= e′1 M

dqe_cvrs_app1

 L app e1 e2

?= app e′1 e′2 M

 L e2
?= e′2 M

dqe_cvrs_app2

 L case(e0, e1, x. e2) ?= case(e′0, e′1, x′. e′2) M

 L e0
?= e′0 M

dqe_cvrs_case0

(dqe_cvrs_case1 and dqe_cvrs_case2 are defined similarly.)

 L app e1 e2
?= lam x. e0 M

 L void M
dqe_app_lam

· · · (Similar rules for all 15 pairs of distinct constructors.)

 Lx. e0
?=2 x. e0 M

dqe2_id
· · · (Similar rules as above.)

Figure 3. Representation logic

Note that, although deval/app has four premises, we only
require structural witnesses for the subderivations concerned
with the evaluation judgment, as we are not interested in
the structure of equality proofs. We define four similar right-
rules for de_lam, de_num, de_case0 and de_case1. Finally,
we define a single left-rule which acts as an elimination
rule for the structural witness Data+. The rule is similar
to elimination for disjunction, in that it has a premise per
introduction rule. The rule is represented in Twelf as follows:

data+L :
(%{case for de_lam ...}%)
-> (%{case for de_num}%

{N0}
{q1:data (dqe X1 (num N0))}
{q2:data (dqe X2 (num N0))}

conc V C)
-> (%{case for de_app}%

{Ev}{E1}{E2}{E0}
{dp1:data (deval E1 (lam E0))}
{dp2:data (deval (E0 E2) Ev)}
{h1:hyp (data+ dp1)}{h2:hyp (data+ dp2)}
{dp3:data (dqe X1 (app E1 E2))}
{dp4:data (dqe X2 Ev)}

conc V C)
-> (%{case for de_case0 ...}%)
-> (%{case for de_case1 ...}%)
-> (hyp (data+ (DP : data (deval X1 X2)))

-> conc V C).

For space reasons, we have elided the full types for the cases
for de_lam, de_case0 and de_case1; their definitions should
be clear from the context.

The above definition should also make the motivation for
introducing the representation logic more clear: Note how
the meta-variables X1 and X2 appear both in the type of
the representation-logic derivation that we are doing case
analysis on, as well as in the types of each proof case, where
specifically they only appear in equality formulas. If the
equality constraints had not been expressed via explicit
equality proofs, we would have run into scoping issues in the
definition of the above rule.

In practice, we want structural-witness proofs to “travel”
with all evaluation derivations. Using Twelf’s support for
definitions, we thus define the following formula abbreviation
to denote assertion-logic proofs of evaluation:

#eval : exp -> exp -> form
= [e][v] existsd [dp:deval e v] data+ dp.

2.3 Cut-elimination
In a sequent calculus, cut-free proofs are exactly the deriva-
tions on normal form. Proving that all derivations normalize
therefore reduces to proving cut-elimination, i.e., proving
that if Ξ|∆ `• A, then also Ξ|∆ `◦ A. For the fragment of
the assertion logic without rules for structural witnesses, we
can use the method of Pfenning [8] without any alterations.
We first prove cut-admissibility for the cut-free fragment of
the logic, i.e.:
Lemma 2 (Cut-admissibility). If we have Ξ|∆ `◦ A and
Ξ|∆, A `◦ C, then also Ξ|∆ `◦ C.
ca : {A} conc cutfree A -> (hyp A -> conc cutful C)

-> conc cutful C -> type.
%mode ca +F +PF1 +PF2 -PF’.

Proof sketch. By lexicographic induction, first on the cut
formula A, followed by simultaneous induction on the two
proof derivations.

Uses of the cut rule can then be eliminated by a bottom-up
procedure which works by simple induction over derivations:
Lemma 3 (Cut-elimination). If Ξ|∆ `• A, then also
Ξ|∆ `◦ A.
ce : conc cutful A -> conc cutfree A -> type.
%mode ce +PF -PF’.

Proof sketch. By induction on derivations, appealing to
Lemma 2 in the case for cut.

Although Pfenning’s cut-admissibility proof was originally
formulated for a single-sorted logic, it generalizes directly
to the dependently-sorted case without requiring alterations.
However, the addition of rules for reasoning by case-analysis
(i.e., the rules for the Data+ connective) requires the termina-
tion measure to be strengthened. The cut-admissibility proof
uses the cut formula as the outermost termination measure,
relying on the fact that the premises of right-rules always
prove strict subformulas of the full derivation. However, this
property does not hold for the right-rules for the Data+ con-
nective, where both the premises and the full derivation end
in formulas of the form Data+(D) for some representation
logic derivation D, and the formulas of the premises hence fail
to get smaller. The inner representation-logic derivations do
get smaller, though, which we can capture using an auxiliary
measure on formulas. First, we define a syntax for formula
skeletons:
skel : type.
kzero : skel.
kunary : skel -> skel.
kbinary : skel -> skel -> skel.

Our measure is a total relation transforming formulas to
skeletons and data derivations. We show three representative
rules, which looks as follows:
msre : form -> skel -> data D -> type.
msre/and :

msre F1 K1 DP1
-> msre F2 K2 DP2
-> msre (F1 /\ F2) (kbinary K1 K2) dqe_id.

msre/forall_e :
({x:exp} msre (F x) K (DP x : data (D x))
-> msre (forall_e F) (kunary K) dqe_id.

msre/data+ : msre (data+ DP) kzero DP.
%{ ... }%

The measure is total, which can be proved as an effectiveness
lemma by trivial induction over formulas.

If we are given measure derivations msre A1 K1 DP1 and
msre A2 K2 DP2, where A1 is a subformula of A2, then K1 is
also a sub-skeleton of K2, justifying the use of skeletons as a
drop-in replacement for formulas as the outermost termina-
tion metric in the cut-admissibility proof. The measure is also
defined such that if we are given a derivation of msre A K DP,
then DP is equal to the “dummy” value dqe_id for all for-
mulas, except for formulas of the form data+ DP’, in which
case DP is chosen to be DP’ and K is chosen to be kzero. This
allows us to continue using representation logic derivations
as a termination metric when formulas do not suffice.

We can thus refine the Twelf formulation of the cut-
admissiblity theorem as follows:
ca : {A}{K}{DP} measure A K DP

-> conc cutfree A -> (hyp A -> conc cutful C)
-> conc cutful C -> type.

%mode ca +F +K +DP +M +PF1 +PF2 -PF’.

The proof proceeds by lexicographic induction on formula
skeletons K, followed by representation logic derivations DP,
and then simultaneous induction over the two assertion-logic
derivations. The proof for the cut-elimination theorem re-
quires only minor adjustments, requiring an extra invocation
of the effectiveness lemma for the msre type family when
appealing to the cut-admissibility lemma.

3. Observational equivalence for simply
typed λ-expressions

In this section, we will describe the formalization of a
soundness proof for the system defined in Figure 4. That
is, we need to prove that a derivation in the axiomatic
equivalence system implies observational equivalence. The
development follows that of Harper [5], but adapted slightly
to be representable in Twelf. We will first define what we
mean when we say that two expressions are observationally
equivalent.

3.1 Observational equivalence
Following Harper, we introduce the notion of expression
contexts, which are expressions with a single “hole”, ◦,
standing for another expression. We write C when refer-
ring to expression contexts, and C{e} for the expression
resulting from replacing e for ◦ in C. Replacement is dif-
ferent from substitution, in that expressions replaced for
holes may capture any variables in scope at hole position
(e.g., (lam x. ◦){app x y} ≡ lam x. app x y). We will write
C : (Γ . τ) (Γ′ . τ ′) when C is an expression context and
for any e where Γ ` e : τ , we have Γ′ ` C{e} : τ ′. We will
not give the definition of context typing here, but it can be
straightforwardly derived from the typing rules in Figure 1.
We say that an expression context C is a program context
iff C : (Γ . τ) (· . nat), i.e., the result of substituting an
expression for the hole in C results in a closed expression
with type nat.
Definition 4 (Kleene equivalence). We say that e and e′
are Kleene equivalent, written e ' e′, iff ∀n. e ⇓ num n ⇐⇒
e′ ⇓ num n.

Expression equivalence: Q :: Γ ` e ∼= e′ : τ :

Γ ` e ∼= e′ : τ
Γ ` e′ ∼= e : τ

q_sym Γ ` e ∼= e′ : τ Γ ` e′ ∼= e′′ : τ
Γ ` e ∼= e′′ : τ

q_trans
Γ, x : τ ` x ∼= x : τ

q_var
Γ ` num n ∼= num n : nat

q_num

Γ ` fail ∼= fail : τ
q_fail

Γ, x : τ2 ` e0 ∼= e′0 : τ0
Γ ` lam x. e0 ∼= lam x. e′0 : τ2 ⇀ τ0

q_lam Γ ` e1 ∼= e′1 : τ2 ⇀ τ0 Γ ` e2 ∼= e′2 : τ2
Γ ` app e1 e2 ∼= app e′1 e′2 : τ0

q_app

Γ ` e0 ∼= e′0 : nat Γ ` e1 ∼= e′1 : τ Γ, x : nat ` e2 ∼= e′2 : τ
Γ ` case(e0, e1, x. e2) ∼= case(e′0, e′1, x. e′2) : τ

q_ifz

Γ ` e1 ∼= e1 : τ
Γ ` case(num z, e1, x. e2) ∼= e1 : τ

q_ifz0 Γ, x : nat ` e2 ∼= e2 : τ
Γ ` case(num (s n), e1, x. e2) ∼= e2[num n/x] : τ

q_ifz1

Γ, x : τ2 ` e0 ∼= e0 : τ0 Γ ` e2 ∼= e2 : τ2
Γ ` app (lam x. e0) e2 ∼= e0[e2/x] : τ0

q_beta Γ ` e ∼= e : τ2 ⇀ τ0
Γ ` e ∼= lam x. app e x : τ2 ⇀ τ0

q_eta

Figure 4. Equational reasoning.

Definition 5 (Observational equivalence). We say that two
(possibly open) expressions e and e′ with Γ ` e : τ and
Γ ` e′ : τ are observationally equivalent in Γ iff for any
C : (Γ . τ) (· . nat), we have C{e} ' C{e′}.

That is, two expressions are observationally equivalent
when any conceivable (well-typed) program context cannot
observe their difference, i.e., yields identical results. This defi-
nition of observational equivalence is rather hard to work with
in proofs, though, as we have to take all conceivable contexts
into consideration when proving that two expressions are
equivalent. However, it turns out that any relation satisfying
the following properties implies observational equivalence:
Definition 6 (Congruence). A family of type-indexed re-
lations on open expressions Γ ` e R e′ : τ is said to be
congruent iff Γ ` e R e′ : τ implies Γ ` C{e} R C{e′} : τ ′ for
any C : (Γ . τ) (Γ′ . τ ′).
Definition 7 (Consistency). A type-indexed family of
relations on expressions Γ ` e R e′ : τ is said to be consistent
iff · ` e R e′ : nat implies ∀n. e ⇓ num n ⇐⇒ e′ ⇓ num n.

It can easily be verified that if any family of relations R
satisfies the above, then Γ ` e R e′ : τ implies that e and e′
are observationally equivalent: Just observe that since R is a
congruence, we have · ` C{e} R C{e′} : nat for any program
context C : (Γ . τ) (· . nat), and by consistency of R, we
hence have C{e} ' C{e′}.

The system in Figure 4 is a congruent equivalence relation
by definition. To prove soundness, it therefore suffices to prove
that it is also consistent, which by the presence of symmetry
(q_sym) reduces to the following:
Theorem 8 (Soundness). For any e, e′, if · ` e ∼= e′ : nat,
then for any n, if e ⇓ num n, then also e′ ⇓ num n.

sim-sound : sim E E’ tnat -> eval E (num N)
-> eval E’ (num N) -> type.

%mode sim-sound +SIP +EP -EP’.

We cannot prove this directly by induction on derivations,
but must use a logical-relations based argument. In the
following we will define a binary logical relation which implies
Kleene equivalence at base types. We then prove the above
theorem by showing that a derivation of Γ ` e ∼= e′ : τ

implies that e and e′ are logically related at τ , assuming that
variables from Γ are related to themselves.

3.2 Logical equivalence
We define logical equivalence and its representation in Twelf
as follows:

Definition 9 (Logical equivalence). We say that two closed
expressions e and e′ are logically equivalent at type τ iff
e ∼τ e′, where

e ∼nat e
′ ⇐⇒ e ' e′,

e ∼τ2⇀τ0 e
′ ⇐⇒ ∀e2. ∀e′2.

e2 ∼τ2 e
′
2 ⇒ app e e2 ∼τ0 app e′ e′2.

% Kleene equivalence
keq : exp -> exp -> form

= [e][e’] forall_n [n] #eval e (num n)
<==> #eval e’ (num n).

lr : tp -> (exp -> exp -> form) -> type.
lr/tnat : lr tnat keq.
lr/tarrow :

lr T2 R2 -> lr T0 R0
-> lr (tarrow T2 T0)

([e][e’]
forall_e [e2] forall_e [e2’]

R2 e2 e2’
==> R0 (app e e2) (app e’ e2’)).

In the following, we will present the lemmas stating that
all the properties of axiomatic equivalence also hold for logical
equivalence, as well as their formulations in Twelf. For brevity,
we will write conc* as an abbreviation for conc cutful.

Logical equivalence is a partial equivalence relation:

Lemma 10. Logical equivalence is symmetric and transitive.

lr-sym : lr T R -> conc* (R E E’)
-> conc* (R E’ E) -> type.

%mode lr-sym +LP +PF -PF’
lr-trans : lr T R -> conc* (R E E’)

-> conc* (R E’ E’’)
-> conc* (R E E’’) -> type.

%mode lr-trans +LP +PF1 +Pf2 -PF3.

Proof. By meta-level induction on τ .

Open expressions are logically equivalent if substituting
related closed expressions for free variables yields related
results. To give a formal definition of this, we introduce the
notion of binary typing contexts and closing substitutions:
Definition 11 (Binary typing context). A binary typing
context is a mapping Ψ = (x1, x

′
1) : τ1, . . . , (xn, x′n) : τn from

2n variables to n types.
Definition 12 (Closing substitution). Given a binary typing
context Ψ = (x1, x

′
1) : τ1, . . . , (xn, x′n) : τn, a closing

substitution for Ψ is a finite function ψ = [x1 7→ e1, x
′
1 7→

e′1, . . . , xn 7→ en, x
′
n 7→ e′n] assigning closed expressions for

variables in Ψ.
For any such ψ, we write ψ̂(e) for the substitution

e[e1/x1, e
′
1/x
′
1, . . . , en/xn, e

′
n/x

′
n].

Definition 13 (Open logical equivalence). Suppose e and e′
are (open) expressions and Ψ = (x1, x

′
1) : τ1, . . . , (xn, x′n) : τn

is a binary typing context. Open logical equivalence, written
Ψ ` e ∼ e′ : τ , is defined to mean that for any closing
substitution ψ for Ψ, if ψ(xi) ∼τi ψ(x′i) for every i, then
ψ̂(e) ∼τ ψ̂(e′) and FV(e) ⊆ {x1, . . . , xn} and FV(e′) ⊆
{x′1, . . . , x′n}.

Note that the definition of open logical equivalence does
not map straightforwardly to our definition of axiomatic
equivalence in Figure 4, as that one uses a unary typing
context. We could also have chosen to define open logical
equivalence in the style of Harper [5], which uses unary
typing contexts and two closing substitutions instead of one,
restricted to having equal domains and pointwise related
codomains. Harper’s formulation is a bit simpler for paper
proofs, but unfortunately, does not have a compositional
representation in LF. This has some implications on the
proof of Theorem 8, which we will return to in Section 3.3.

We can represent open logical equivalence in Twelf using
the LF context, by defining the encoding

pΨ, (xi, x′i) : τiq
= pΨq, xi:exp, x′i:exp, ui:conc* (p∼τiq xi x′i),

where p∼τq denotes the formula representation of the logical
relation at type τ .

Symmetry and transitivity (Lemma 10) transfers directly
to open logical equivalence. It remains to prove that open
logical equivalence is a congruence, and that it respects
β-reduction and η-expansion. To do that, we need some
auxiliary results and a notion of weak equivalence; a slight
generalization of Kleene equivalence:
Definition 14 (Weak equivalence). We write e ≈ e′ iff
∀v. e ⇓ v ⇐⇒ e′ ⇓ v.
weq : exp -> exp -> form

= [e][e’] forall_e [v] #eval e v <==> #eval e’ v.

Lemma 15 (Closure under weak equivalence). If e ≈ e′ and
e′ ∼τ e′′, then e ∼τ e′′.
cweq : lr T R -> conc* (weq E E’)

-> conc* (R E’ E’’) -> conc* (R E E’’) -> type.
%mode cweq +LP +PF1 +PF2 -PF3.

Proof sketch. By Lemma 10, it suffices to show that if e ≈ e′
and e′ ∼τ e′, then e ∼τ e′. We proceed by meta-level
induction on τ . In the base case, the result follows directly.
In the case for function types, we appeal to the induction

hypothesis, which we justify by proving app e e2 ≈ app e′ e2
for some e2: This result follows by assumption and case
analysis on possible derivations. For example, in the forward
direction, we need to prove that if app e e2 ⇓ v (for some
v), then also app e′ e2 ⇓ v. Since the given evaluation can
only end in e_app, we obtain a derivation of e ⇓ lam x. e0
for some x. e0, which by e ≈ e′ implies e′ ⇓ lam x. e0, so by
e_app, we are done.

The Twelf proof of the above lemma depends crucially
on our ability to reason by case analysis and equality in the
assertion logic. Case analysis allows us to proceed by cases
on evaluation derivations, while the equality principles of the
representation logic allows us to derive falsehood in all cases
but the one for e_app.
Lemma 16 (Application commutes over case). For any
e0,e1,x. e2 and e′, where x 6∈ FV(e′), we have
app case(e0, e1, x. e2) e′ ≈ case(e0, app e1 e

′, x. app e2 e
′).

weq-app :
pf (weq (app (case E0 E1 E2) E’)

(case E0 (app E1 E’) ([x] app (E2 x) E’)))
= %{ ... }%

Proof sketch. By case analysis on derivations.

We need to prove that logical equivalence is congruent
with respect to all six syntactic constructors of the object
language, namely app, lam, case, num, fail and variables. We
will prove this in the following, but to conserve space, we
only show the Twelf representation of a representative subset
of the lemmas.
Lemma 17 (Congruence at application). Suppose that
Ψ ` e1 ∼ e′1 : τ2 ⇀ τ0 and Ψ ` e2 ∼ e′2 : τ2. Then, we also
have Ψ ` app e1 e2 ∼τ0 app e′1 e′2.
lr-app : lr T2 R2 -> lr T0 R0

-> conc* (forall_e [e2] forall_e [e2’]
R2 e2 e2’

==> R0 (app E1 e2) (app E1’ e2’))
-> conc* (R2 E2 E2’)
-> conc* (R0 (app E1 E2) (app E1’ E2’))
-> type.

%mode lr-app +LP2 +LP0 +PF1 +PF2 -PF3.

Proof. Direct, by definition of logical equivalence at function
type.

Lemma 18 (Congruence at abstraction). Suppose that
Ψ, (x, x′) : τ2 ` e ∼ e′ : τ0.

Then also Ψ ` lam x. e ∼ lam x′. e′ : τ2 ⇀ τ0.

Proof sketch. By Lemma 15 on the assumption, justified by
proving that app (lam x. e) e2 ≈ e[e2/x] for any e, e2 by case
analysis on possible derivations, followed by applications of
Lemma 10 where appropriate.

Lemma 19 (Congruence at case). Suppose Ψ ` e0 ∼ e′0 : nat,
and Ψ ` e1 ∼ e′1 : τ , and Ψ, (x, x′) : nat ` e2 ∼ e′2 : τ . Then
also Ψ ` case(e0, e1, x. e2) ∼ case(e′0, e′1, x′. e′2) : τ .
lr-case : lr T R -> conc* (keq E0 E0’)

-> conc* (R E1 E1’)
-> ({x}{x’} conc* (keq x x’)

-> conc* (R (E2 x) (E2’ x’)))
-> conc* (R (case E0 E1 E2) (case E0’ E1’ E2’))
-> type.

%mode lr-case +LP +PF0 +PF1 +PF2 -PF’.

Proof sketch. By induction on τ . For τ = nat, it suffices to
prove that Kleene equivalence is congruent with respect to
case, which follows by case analysis on possible derivations.
For τ = τ2 ⇀ τ0, we proceed by induction, and using
Lemma 15 and Lemma 16.

Lemma 20 (Reflexivity at numerals). For any n, we have
Ψ ` num n ∼ num n : nat.
lr-num : pf (keq (num N) (num N)) = %{ ... }%

Proof. Directly by definition.

The proof for congruence at fail needs a slightly more
general induction hypothesis to go through, requiring the
introduction of a new form of context:
Definition 21 (Applicative context). An applicative context
is an expression with a single hole, generated by the following
grammar:

Applicative contexts: A ::= ◦ | app A e2.

ctx : (exp -> exp) -> type.
ctx/id : ctx ([x] x).
ctx/app : ctx E1 -> ctx ([x] app (E1 x) E2).

Lemma 22 (Strictness of applicative contexts). For any
applicative context A, we have A{fail} 6⇓, i.e., an expression
with fail in reduction position does not evaluate.
eval-strict : ctx A

-> conc* (forall_e [v]
#eval (A fail) v

==> existsd [dp:data dvoid] top)
-> type.

%mode eval-strict +CP -PF.

Proof sketch. By meta-level induction on A.

Lemma 23 (Strictness of logical equivalence). For any
applicative contexts A, A′, and for any type τ , we have
Ψ ` A{fail} ∼ A′{fail} : τ .
lr-strict : ctx A -> ctx A’ -> lr T R

-> conc* (R (A fail) (A’ fail)) -> type.
%mode lr-strict +CP +CP’ +LP -PF.

Proof sketch. By meta-level induction on τ , appealing to
Lemma 22 in the case for τ = nat.

Congruence at fail follows as a special case of the above.
The case for congruence at variables needs no proof, due

to the use of higher-order abstract syntax to represent open
logical equivalence.

We have now proved that logical equivalence is a con-
gruent equivalence relation. It remains to show that logical
equivalence also supports βη-conversion and reduction of
case constructs:
Lemma 24 (β-conversion). If Ψ ` lam x. e0 ∼ lam x′. e′0 :
τ2 ⇀ τ0 and Ψ ` e2 ∼ e′2 : τ2, then we also have
Ψ ` app (lam x. e0) e2 ∼ e′0[e′2/x′] : τ0.
lr-beta : lr T0 R0 -> lr T2 R2

-> (conc* (forall_e [e2] forall_e [e2’]
R2 e2 e2’ ==> R0 (app (lam E0) e2)

(app (lam E0’) e2’)))
-> conc* (R2 E2 E2’)
-> conc* (R0 (app (lam E0) E2) (E0’ E2’))
-> type.

%mode lr-beta +LP0 +LP2 +PF1 +PF2 -PF’.

Proof sketch. Follows by Lemma 17, and Lemma 15 on a
proof of app (lam x. e0) e2 ≈ e0[e2/x], which follows by case
analysis on possible derivations.

Lemma 25 (η-conversion). If Ψ ` e ∼ e′ : τ2 ⇀ τ0, then
also Ψ ` e ∼ lam x. (app e′ x) : τ2 ⇀ τ0.

Proof sketch. Follows by Lemma 18 and Lemma 15.

Lemma 26 (Case reduction at zero numeral). If Ψ ` e1 ∼
e′1 : τ , then also Ψ ` case(num z, e1, x. e2) ∼ e1 : τ .
Lemma 27 (Case reduction at non-zero numeral). If
Ψ, (x, x′) : nat ` e2 ∼ e′2 : τ , then also

Ψ ` case(num (s n′), e1, x. e2) ∼ e′2[num n′/x′] : τ.
This concludes the proofs of properties required to show

that axiomatic equivalence implies logical equivalence. In
the following section, we will return to the soundness proof
(Theorem 8).

3.3 Context separation
We will prove Theorem 8 by showing that · ` e ∼= e′ : nat
implies · ` e ∼ e′ : nat, which by definition implies Kleene
equivalence and hence consistency of axiomatic equivalence.
However, the proof needs to work in non-empty contexts as
well in order to go through.

One attempt would be to prove that if
x1 : τ1, . . . , xn : τn ` e ∼= e′ : τ,

then also
(xL1 , xR1) : τ1, . . . , (xLn , xRn) : τn
` e[xL1 /x1, . . . , x

L
n/xn] ∼ e′[xR1 /x1, . . . , x

R
n /xn] : τ,

for some xL1 , xR1 , . . . , xLn , xRn . That is, for every xi, we intro-
duce two fresh, distinct variables xLi , xRi , effectively “separat-
ing” the context. This approach is possible, but results in a
surprisingly complex Twelf proof, due to the extra overhead
of keeping track of “left” and “right” versions of each variable
assumption.

An easier approach is to divide the soundness proof into
two steps. In the first step, we show that we can translate
derivations in the original axiomatic equivalence system into
an alternative version of the system that uses binary contexts.
We then prove consistency of this system instead.

A representative subset of the definition of the alternative
reasoning system can be seen in Figure 5. The only differences
is in the rules for variables and in the rules that extend the
context. Note that when extending the context, variables are
renamed such that the context is only extended with distinct
variables.

The Twelf representation of the alternative system looks
as follows:
sim* : exp -> exp -> tp -> type.
sim*/lam : ({l}{r} sim l r T2

-> sim (E0 l) (E0’ r) T0)
-> sim (lam E0) (lam E0’) (tarrow T2 T0).

%{ ... remaining rules elided ... }%

Conversion is shown by first proving that a single assump-
tion with identical variables can be rewritten such that the
variables are distinct:
Lemma 28 (Doubling). If Ψ, (x, x) : τ ′ `? e ∼= e′ : τ , then
also

Ψ, (xL, xR) : τ ′ `? e[xL/x] ∼= e′[xR/x] : τ,
for some xL 6= xR.

Expression equivalence, alt.: Q :: Ψ `? e ∼= e′ : τ :

Ψ `? e ∼= e′ : τ
Ψ `? e′ ∼= e : τ

q_sym?

Ψ `? e ∼= e′ : τ Ψ `? e′ ∼= e′′ : τ
Ψ `? e ∼= e′′ : τ

q_trans?

Ψ, (x, x′) : τ `? x ∼= x′ : τ
q_var?

(xL 6=xR)

Ψ, (xL, xR) : τ2 `? e0[xL/x] ∼= e′0[xR/x′] : τ0
Ψ `? lam x. e0 ∼= lam x′. e′0 : τ2 ⇀ τ0

q_lam?

...

Figure 5. Alternative expression equivalence, representative
subset.

sim*-double :
({x} sim* x x T -> sim* (E x) (E’ x) T’)
-> ({l}{r} sim* l r T -> sim* (E l) (E’ r) T’)
-> type.

%mode sim*-double +SIP -SIP’.

Proof sketch. By induction on derivations. The cases for
q_trans? and q_sym? involves an extra inner induction proof
to convert uses of the rewritten assumptions. For example,
in the case for q_sym?, we get by the induction hypothesis
that Ψ, (xL, xR) : τ ′ `? e′[xL/x] ∼= e[xR/x] : τ , but we need
Ψ, (xL, xR) : τ ′ `? e′[xR/x] ∼= e[xL/x] : τ in order to be able
to reapply q_sym? and obtain the desired goal. By inner
induction, we apply q_sym? to all uses of the assumption
(xL, xR) : τ ′, and we are done.

The conversion lemma proceeds by a straightforward
bottom-up conversion of derivations:

Lemma 29 (Conversion). Suppose Γ = x1 : τ1, . . . , xn : τn
and Ψ = (x1, x1) : τ1, . . . , (xn, xn) : τn. If Γ ` e ∼= e′ : τ ,
then also Ψ `? e ∼= e′ : τ .

sim=>sim* : sim E E’ T -> sim* E E’ T -> type.
%mode sim=>sim* +SIP -SIP’.

Proof sketch. By straightforward induction on derivations.
In all cases where the context is extended, e.g. q_lam, we
appeal to the induction hypothesis followed by Lemma 28,
which ensures that we can apply the alternative rule (e.g.,
q_lam?) to the result.

Note that the conversion lemma does not rewrite existing
contexts, only derivations. Since we are only interested in
proving consistency, which involves an empty context, this
is not a problem.

Soundness of the alternative system follows by straight-
forward induction on derivations:

Lemma 30 (Soundness, alternative). Suppose Ψ = (x1, x
′
1) :

τ1, . . . , (xn, x′n) : τn, where xi 6= x′i for every i. If Ψ `? e ∼=
e′ : τ , then also Ψ ` e ∼ e′ : τ .

sim*-sound : sim* E E’ T -> lr T R
-> conc* (R E E’) -> type.

%mode sim*-sound +SIP -LP -SP.

Proof sketch. By straightforward induction over derivations.
Cases q_sym, q_trans are covered by Lemma 10; q_app
by Lemma 17; q_lam by Lemma 18; q_case by Lemma
19; q_num by Lemma 20; q_fail by Lemma 23; q_case0 by
Lemma 26; q_case1 by Lemma 27; q_beta by Lemma 24; and
q_eta by Lemma 25. The case for q_var follows directly.

The soundness theorem now follows as a corollary. Recall
that we needed to prove that for any e,e′, if · ` e ∼= e′ : nat,
then for any n, if e ⇓ num n, then e′ ⇓ num n′.

Proof of Theorem 8.

1. By Lemma 29, we obtain · `? e ∼= e′ : nat.
2. By Lemma 30, we obtain · ` e ∼ e′ : nat, or, by definition,
·|· `• e ' e′.

3. By Lemma 1 and assumption, we obtain
 L e ⇓ num n M.
4. By allL_n, impL, exiR_d, andL1 and ax, we obtain a cutful

derivation of ·|· `• ∃α : (
 L e′ ⇓ num n M).
5. By Lemma 3, we obtain ·|· `◦ ∃α : (
 L e′ ⇓ num n M).
6. As the above derivation can only end in exiR_d, we

obtain L̀F
Σ M : p
 L e′ ⇓ num n Mq for some LF term M.

By adequacy of encoding, there exists a derivation of

 L e′ ⇓ num n M.

7. By Lemma 1, we obtain e′ ⇓ num n, and we are done.

sim-sound : sim E E’ tnat -> eval E (num N)
-> eval E’ (num N) -> type.

%mode sim-sound +SIP +EP -EP’.
eval-sound : conc cutfree (#eval E V)

-> eval E V -> type.
%mode eval-sound +PF -EP.

- : sim-sound (SIP : sim E E’ tnat) EP EP’
<- sim=>sim* SIP SIP’
<- sim*-sound SIP’ lr/tnat SP
<- emb EP DP SP+
<- ce (cut SP

(foralll_n N
(andl_1 (impl (existsdr DP SP+) ax))))

SP’
<- eval-sound SP’ EP’.

% Separate lemma necessary due to coverage check
- : eval-sound (existsdr DP _) EP

<- unemb DP EP.

4. Conclusion and future work
We have presented an extension of the method of structural
logical relations that admits case analysis and equality
reasoning to be used in proofs, while still allowing the
consistency of the assertion logic to be proved as a meta-
theorem. We have demonstrated that the technique allows
the formalization of proofs of meta-theory for programming
languages, specifically proofs of observational equivalence
between expressions in a call-by-name language. The method
has also been used to prove observational equivalence for a
call-by-value language with non-determinism [11]. Although
the meta-theory for such a system is more complex, the
methodology required to formalize the results in Twelf
remains the same.

The Twelf formalizations presented here involve quite a
bit of boilerplate code, much of which is very mechanical.
For example, whenever the evaluation judgment is extended
with new rules, we have to add corresponding rules to
the representation-logic formalization as well, which again

requires the assertion logic and the cut-admissibility proof to
be extended. This means that adding a single new syntactic
construct to the object language may require a substantial
amount of boilerplate to be written as well. A topic for
future work would be to develop a streamlined way of
generating assertion logics and representation logics from an
LF signature, possibly by utilizing the experimental Twelf
module system [9].

While adding case-analysis principles to the assertion logic
is evidently feasible, Twelf is not proof-theoretically strong
enough to prove normalization of a logic with a general
induction principle [12]. If we want to avoid having to trust
the consistency of the assertion logic, we therefore have to
do without an induction principle. Alternatively, we can still
write a normalization procedure for such a logic, and tell
Twelf that we believe that it terminates. Having to believe
in the termination of a normalization proof for a relatively
standard first-order logic may in many cases be an acceptable
trade-off for a more expressive assertion logic.

While we have succesfully formalized the meta-theory of
an object language with more complex features than the
one used in the original presentation by Schürmann and Sar-
nat [13], there are still certain aspects that are not present
in our formalization. Importantly, the original presentation
of structural logical relations dealt with a language which al-
lowed reductions under abstractions, whereas our evaluation
judgment is only defined for closed expressions. This means
that our representation-logic encoding of the object-language
semantics never has to deal with (object-level) variables. It is
not immediately clear, and a topic for future work, whether
the methodology presented here can be extended to work for
such systems as well.

It has previously been demonstrated by Abel [1] that a
normalization proof for a simply typed lambda calculus can
be formalized in Twelf without formulating an assertion logic,
yielding a simpler proof. His proof does, however, still require
one to prove properties akin to cut-elimination, albeit for a
specialized syntactic relation instead of a general assertion
logic. It would be interesting to investigate whether some
of the ideas presented here, specifically the addition of case
analysis and equality reasoning, can be transferred to his
methodology.

4.1 Related work
The Twelf module system has recently been extended with a
notion of logical relations [9, 10]. The module system allows
the definition of isolated signatures and morphisms, which are
transformations of types and terms in one signature to types
and terms in another. A theory of logical relations is then
built on top of the module system, allowing one to express
logical relations as an n-ary relation between morphisms, i.e.,
relations between interpretations of expressions.

This gives a compact way of representing proofs of the
fundamental theorem, e.g., we could use it to prove that
all well-typed expressions of a terminating language are
related to an assertion-logic proof proving that they evaluate.
However, we would still have to trust the consistency of the
assertion logic. The module system is not integrated with
the Twelf meta-logic at all, so a logical-relations argument
formulated in this way cannot be given an operational
interpretation as a Twelf meta-theorem.

Acknowledgments
We would like to thank the anonymous reviewers for com-
prehensive and helpful comments and recommendations for

improvement. We would also like to thank Carsten Schür-
mann for helpful discussions on the topic.

References
[1] Andreas Abel. Normalization for the simply-typed lambda-

calculus in Twelf. In Proceedings of the Fourth International
Workshop on Logical Frameworks and Meta-Languages
(LFM 2004), volume 199 of Electronic Notes in Theoretical
Computer Science, February 2008.

[2] Karl Crary. Logical relations and a case study in equivalence
checking. In Benjamin C. Pierce, editor, Advanced Topics in
Types and Programming Languages, pages 223–243, 2005.

[3] Robert Harper, Furio Honsell, and Gordon Plotkin. A
framework for definining logics. Journal of the ACM,
40(1):143–184, 1993.

[4] Robert Harper and Daniel R. Licata. Mechanizing metatheory
in a logical framework. Journal of Functional Programming,
17(4–5):613–673, July 2007.

[5] Robert Harper. Practical Foundations for Programming lan-
guages, pages 413–432, ISBN 978-1-107-02957-6, Cambridge
University Press, 2013.

[6] Daniel K. Lee, Karl Crary, and Robert Harper. Towards
a mechanized metatheory of Standard ML. In Proceedings
of the 34th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL’07, pages
173–184, New York, NY, USA, 2007.

[7] Frank Pfenning and Carsten Schürmann. System description:
Twelf — a meta-logical framework for deductive systems. In
H. Ganzinger, editor, Proceedings of the 16th International
Conference on Automated Deduction (CADE-16), pages
202–206, Trento, Italy, June 1999.

[8] Frank Pfenning. Structural cut elimination: I. Intuitionistic
and classical logic. Information and Computation, 157(1-
2):84–141, 2000.

[9] Florian Rabe and Carsten Schürmann. A practical module
system for LF. In J. Cheney and A. Felty, editors, Proceedings
of the Workshop on Logical Frameworks: Meta-Theory and
Practice (LFMTP), volume LFMTP’09 of ACM International
Conference Proceeding Series, pages 40–48. ACM Press, 2009.

[10] Florian Rabe and Kristina Sojakova. Logical relations for
a logical framework. ACM Transactions on Computational
Logic, 2013. to appear; see http://kwarc.info/frabe/
Research/RS_logrels_12.pdf.

[11] Ulrik Rasmussen. Formalization of proofs by logical relations
in a logical framework. M.Sc. Thesis, Department of Computer
Science, University of Copenhagen, Denmark; can be obtained
electronically at http://utr.dk/slr/, 2013.

[12] Jeffrey Sarnat. Syntactic Finitism in the Metatheory of
Programming Languages. PhD thesis, Yale University, May
2010.

[13] Carsten Schürmann and Jeffrey Sarnat. Structural logical
relations. In Proceedings of the 2008 23rd Annual IEEE
Symposium on Logic in Computer Science, LICS’08, pages
69–80, 2008.

[14] William W. Tait. Intensional interpretations of functionals of
finite type I. The Journal of Symbolic Logic, 32(2):198–212,
1967.

http://kwarc.info/frabe/Research/RS_logrels_12.pdf
http://kwarc.info/frabe/Research/RS_logrels_12.pdf
http://utr.dk/slr/

	Introduction
	Structural logical relations
	Contributions

	Extended structural logical relations
	Representation logic
	Case analysis
	Cut-elimination

	Observational equivalence for simply typed -expressions
	Observational equivalence
	Logical equivalence
	Context separation

	Conclusion and future work
	Related work

