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Abstract
Tabular top-down parsing and its lazy variant, Packrat, are linear-
time execution models for the TDPL family of recursive descent
parsers with limited backtracking. Exponential work due to back-
tracking is avoided by tabulating the result of each (nonterminal,
offset)-pair at the expense of always using space proportional to
the product of the input length and grammar size. Current methods
for limiting the space usage rely either on manual annotations or
on static analyses that are sensitive to the syntactic structure of the
grammar.

We present progressive tabular parsing (PTP), a new execution
model which progressively computes parse tables for longer prefixes
of the input and simultaneously generates a leftmost expansion of
the parts of the parse tree that can be resolved. Table columns can be
discarded on-the-fly as the expansion progresses through the input
string, providing best-case constant and worst-case linear memory
use. Furthermore, semantic actions are scheduled before the parser
has seen the end of the input. The scheduling is conservative in the
sense that no action has to be “undone” in the case of backtracking.

The time complexity is O(dmn) where m is the size of the
parser specification, n is the size of the input string, and d is either
a configured constant or the maximum parser stack depth.

For common data exchange formats such as JSON, we demon-
strate practically constant space usage.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Parsing; F.4.2 [Mathematical Logic and For-
mal Languages]: Grammars and Other Rewriting Systems—Parsing

Keywords Parsing expression grammars, context-free grammars,
regular expressions, Packrat, streaming parsing

1. Introduction
Parsing of computer languages has been a topic of research for
several decades, leading to a large family of different parsing
methods and formalisms. Still, with each solution offering varying
degrees of expressivity, flexibility, speed and memory usage, and
often at a trade-off, none of them can be regarded as an ideal general
approach to solving all parsing problems. For example, compiler
writers often specify their languages in a declarative formalism such
as context-free grammars (CFG), relying on LL(k) or LR(k) parser
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generators to turn their specifications into executable parsers. The
resulting parsers are often fast, but with the downsides that a separate
lexical preprocessing is needed, and that the programmer is required
to mold the grammar into a form that is deterministic for the chosen
parser technology. Such solutions require a large investment in time,
as identifying the sources of nondeterminism in a grammar can be
quite difficult. A user who needs an ad-hoc parser will thus not find
the amount of time invested to make up for the apparent benefits.

Aho and Ullman’s TDPL/GTDPL languages [1], which were
later popularized as Parsing Expression Grammars (PEG) [8],
provide a formal foundation for the specification of recursive-
descent parsers with limited backtracking. They do away with
the problem of nondeterminism by always having, by definition,
a single unique parse for every accepted input. The syntax of PEGs
resembles that of CFGs, but where a CFG is a set of generative
rules specifying its language, a PEG is a deterministic backtracking
program, whose language is the set of strings on which it terminates
without failure. This ensures unique parses, but with the downside
that it can sometimes be quite hard to determine what language a
given PEG recognizes. Recognition can be performed in linear time
and space by an algorithm which computes a table of results for
every (nonterminal, input offset)-pair [1], although it seems to never
have been used in practice, probably due to its large constant factors
in complexity. Ford’s Packrat parsing [7] reduces these constants
by only computing the table entries that are needed to construct the
actual parse. However, the memory usage of Packrat is Θ(mn) for
PEGs of size m and inputs of size n, which can be prohibitively
expensive for large m and n, and completely precludes applying it
in a streaming context where input is potentially infinite. Heuristics
for reducing memory usage [13; 21] still store the complete input
string, and even risk triggering exponential time behavior. One
method [18] can remove both table regions and input prefixes from
memory during runtime, but relies on manual annotations and/or
a static analysis which does not seem to perform well beyond LL
languages [22].

In this paper, we present progressive tabular parsing (PTP),
a new execution model for the TDPL family of languages. The
method is based on the tabular parsing of Aho and Ullman, but
avoids computing the full parse table at once. We instead start by
computing a table with a single column based on the first symbol in
the input. For each consecutive symbol, we append a corresponding
column to the table and update all other entries based on the newly
added information. We continue doing this until the end of the
input has been reached and the full parse table has been computed.
During this process, we have access to partial parse tables which
we use to guide a leftmost expansion of the parse tree for the
overall parse. Whenever a prefix of the input leads to a unique
parse tree expansion, the prefix and its corresponding table columns
can be removed from memory. The result is a linear-time parsing
algorithm which still uses O(mn) memory in the worst case, but



O(m) in the best case. Since we have access to the partial results
of every nonterminal during parsing, a simple dynamic analysis
can use the table to rule out alternative branches and speculatively
expand the parse tree before the corresponding production has been
fully resolved. The speculation is conservative and never has to
undo an expansion unless the whole parse turns out to fail. The
analysis changes the time complexity to O(dmn) for a configurable
constant d bounded by the maximum stack depth of the parser, but
preliminary experiments suggests that it pays for itself in practice
by avoiding the computation of unused table entries.

The method can be formulated elegantly using least fixed points
of monotone table operators in the partial order of tables with
entrywise comparison, and where unresolved entries are considered
a bottom element in the partial order. The computation of parse
tables is then an instance of chaotic iteration [5] for computing
least fixed points using a work set instead of evolving all entries in
parallel. The work set is maintained such that we obtain meaningful
partial parse tables as intermediate results which can be used by the
dynamic analysis. Linear time is obtained by using an auxiliary data
structure to ensure that each table entry is added to the work set at
most once.

Our evaluation demonstrates that PTP dynamically adapts its
memory usage based on the amount of lookahead required to re-
solve productions. The complexity constant due to indiscriminately
computing all entries of the parse table can be quite large, but can
be reduced by applying an optimization inspired by Ford’s Packrat
algorithm, which reduces the amount of work by an order of mag-
nitude on some inputs. We believe that our general formulation of
PTP offers a solid foundation for further development of both static
and dynamic analyses for improving performance.

To summarize, we make the following contributions:

• Progressive tabular parsing (PTP), a new execution model for
the TDPL family of parsing formalisms. The execution of a
program proceeds by progressively computing parse tables,
one for each prefix of the input, using the method of chaotic
iteration for computing least fixed points. Meanwhile, a leftmost
expansion of the parse tree is generated in a streaming fashion
using the parse table as an oracle. Table columns are discarded
on-the-fly as soon as the method detects that a backtracking
parser would never have to return to the corresponding part of
the input.
• An algorithm for computing progressive parse tables in an

incremental fashion. It operates in amortized time O(mn) for
grammars of size m and inputs of size n, and produces n
progressive approximations of the parse table. We show that
for certain grammars and inputs, as little as O(m) space is
consumed.
• A configurable dynamic analysis which can dramatically im-

prove the streaming behavior of parsers by allowing a longer
trace to be generated earlier in the parse. The dynamic analysis
changes the time complexity to O(dmn) where d is either a
configured constant or the maximum parser stack depth.
• An optimized version of the above algorithm which uses a

technique inspired by Packrat parsing to reduce the amount
of work by an order of magnitude on certain inputs.
• An evaluation of a prototype of the algorithm which demon-

strates that a) for an unannotated JSON parser written in the
PEG formalism, memory usage is practically constant, b) for
parsers of non-LL languages, the algorithm adjusts memory us-
age according to the amount of lookahead required, c) however,
ambiguous tail-recursive programs trigger worst-case behavior.

The paper is organized as follows. The GTDPL and PEG parsing
formalisms are introduced in Section 2 together with bit-serialized

parse trees and streaming parsing. In Section 3 we recall the linear-
time tabular parsing method, but defined using least fixed points. We
extend this in Section 4 to obtain an approximation of the full parse
table based on a prefix of the full input string. In the same section,
we define the streaming generation of execution traces based on
dynamic analysis of approxmation tables, which we then use to
present the progressive tabular parsing method. In Section 5 we
exhibit—and prove correct—an amortized linear-time algorithm for
computing all progressive table approximations for all consecutive
prefixes of an input string, and we also present an optimization in-
spired by Packrat parsing. A prototype implementation is evaluated
on three different parsing programs in Section 6. We conclude with
a discussion of related and future work in Section 7.

2. Parsing Formalism
The generalized top-down parsing language (GTDPL) is a language
for specifying top-down parsing algorithms with limited backtrack-
ing [1; 3]. It has the same recognition power as the top-down parsing
language (TDPL), from which it was generalized, and parsing ex-
pression grammars (PEG) [8], albeit using a smaller set of operators.

The top-down parsing formalism can be seen as a recognition-
based alternative to declarative formalisms used to describe machine
languages, such as context-free grammars (CFGs). A CFG consti-
tutes a set of generative rules that characterize a language, and the
presence of ambiguity and nondeterminism poses severe challenges
when such a specification must be turned into a deterministic parsing
algorithm. In contrast, every GTDPL/PEG by definition denotes a
deterministic program which operates on an input string and returns
with an outcome indicating failure or success.

Definition 1 (Program). A GTDPL program (henceforth just pro-
gram) is a tuple P = (Σ, V, S,R) where

1. Σ is a finite input alphabet; and
2. V is a finite set of nonterminal symbols; and
3. S ∈ V is the starting nonterminal; and
4. R = {A0←g0, ..., Am−1←gm−1} is a non-empty finite set of

numbered rules, where each Ai is in V and each gi ∈ GExpr is
an expression generated by the grammar

GExpr 3 g ::= ε | f | a | A[B,C]

where A,B,C ∈ V , a ∈ Σ, and ε, f are distinct symbols not in
Σ. Rules are unique: i 6= j implies Ai 6= Aj .

Define the size |P | of a program to be the cardinality of its rule
set |R| = m. When P is understood, we will write A←g for the
assertionA←g ∈ R. By uniqueness of rule definitions, we can write
iA for the unique index of a rule Ai←gi in R. If gi is of the form
B[C,D] it is called a complex expression, otherwise it is simple.

The intuitive semantics of a production A←a is to read an a off
the input string and return the remainder. If the first symbol is not an
a, it fails and returns f. A production A←ε always succeeds reading
no symbols, and A←f always fails. A production A←B[C,D]
first tries parsing the input with B, and if this succeeds, parses the
remainder with C. Only if B fails does it backtrack and parse from
the beginning of the input with D. For this reason we call B the
condition and C and D the continuation branch and failure branch,
respectively. The semantics are formally defined in the following.

Definition 2 (Operational semantics). Let P = (Σ, V, S,R) be a
program. The matching relation⇒P is the smallest binary relation
⇒⊆ (V × Σ∗)× (Σ∗ ] {f}) closed under the following rules:

(1) (A←ε)
(A, u)⇒ u

(2) (A←f)
(A, u)⇒ f

(3i) (A←a)
(A, au)⇒ u



(3ii) (A←a and a not prefix of u)
(A, u)⇒ f

(B, u)⇒ v (C, v)⇒ r
(4i) (A←B[C,D])

(A, u)⇒ r

(B, u)⇒ f (D,u)⇒ r
(4ii) (A←B[C,D])

(A, u)⇒ r

The proof derivations generated by the rules will be denoted by
subscripted variations of the letter D.

We write (A, u) 6⇒P if there is no r such that (A, u)⇒P r and
say that A matches u if (A, u)⇒P v for some v ∈ Σ∗. (Note that
A does not have to consume all of the input.) The language LP (A)
recognized by A is the set of u ∈ Σ∗ it matches. The language
rejected by A is LP (A) = {u ∈ Σ∗ | (A, u) ⇒P f}. A program
P is complete if the start symbol S accepts or rejects each string.

The following two properties are easily shown by induction.

Proposition 2.1 (Suffix output). If (A, u)⇒P w, then w is a suffix
of u: ∃v. u = vw.

Proposition 2.2 (Determinacy). If (A, u)⇒P r1 and (A, u)⇒P

r2, then r1 = r2.

We recall the following negative decidability results proved by
Ford for the PEG formalism [8]. Since any GTDPL can be effectively
converted to an equivalent PEG and vice-versa, they hold for GTDPL
as well.

Proposition 2.3. It is undecidable whether LP (A) = ∅ and
whether LP (A) = Σ∗.

Proposition 2.4. It is undecidable whether a program is complete.

2.1 Parsing Expression Grammars
Having only a single complex operator, GTDPL offers a minimal
foundation which simplifies the developments in later sections.
The drawback is that it is very hard for a human to determine the
language denoted by a given GTDPL program. In order to make
examples more readable, we will admit programs to be presented
with expressions from the extended set PExpr defined as follows:

PExpr 3 e ::= g ∈ GExpr | e1e2 | e1/e2 | e∗ | !e1

This corresponds to the subset of predicate-free parsing expressions
extended with the ternary GTDPL operator. A program P with
productions in PExpr is called a PEG program, and desugars to a
pure GTDPL program by adding productions E←ε and F←f and
replacing every non-conforming production as follows:

A←e1e2 7−→ A←B[C,F ]
B←e1

C←e2

A←e1/e2 7−→ A←B[E,C]
B←e1

C←e2

A←e∗1 7−→ A←B[A,E]
B←e1

A←!e1 7−→ A←B[F,E]
B←e1

The desugaring embeds the semantics of PEG in GTDPL [8], so
there is no need to introduce semantic rules for parsing expressions.
Note that although parsing expressions resemble regular expressions,
the recognizers that they denote may not recognize the same
languages as their usual set-theoretic interpretation. For example,
the expression a∗a recognizes the empty language! For every string
of the form an, n ≥ 0, subexpression a∗ successfully consumes all
n symbols, leaving the empty string to be matched by subexpression
a, which subsequently fails.

2.2 Parse Trees
We are usually interested in providing a parse tree instead of just
doing recognition, e.g. for the purpose of executing semantic actions
associated with parsing decisions. Unlike generative frameworks,
any program uniquely matches an input via a unique derivation D,
which we therefore could take as our notion of parse tree. However,
for space complexity reasons, we will employ a more compact
notion for which we also define a bit coding for the purpose of
providing a definition of streaming parsing.

A parse tree T is an ordered tree where each leaf node is labeled
by the empty string or a symbol in Σ, and each internal node is
labeled by a nonterminal subscripted by a symbol from 2 ∪ {ε}
where 2 = {0, 1} and ε denotes the empty string (to distinguish it
from the GTDPL expression ε).

Definition 3 (Parse trees and codes). For any A ∈ V , u, v ∈ Σ∗,
and derivation D :: (A, u) ⇒P v, define simultaneously a parse
tree TD and a parse code CD ∈ 2∗ by recursion on D:

1. If A←ε, respectively A←a, then TD is a node labeled by Aε

with a single child node labeled by ε, respectively a. Let CD = ε.
2. If A←B[C,D] and D1 :: (B, u) ⇒P u′ we must have
D2 :: (C, u′) ⇒P v. Let TD be a node A0 with subtrees TD1

and TD2 . Let CD = 0 CD1CD2 .
3. If A←B[C,D] and D1 :: (B, u) ⇒P f, then we must have
D2 :: (D,u′)⇒P v. Create a node labeled by A1 with a single
subtree TD2 . Let CD = 1 CD2 .

The code CD intuitively encodes for each encountered A[B,C]
whether the condition A succeeds or fails. This compactly encodes
TD which can be reconstructed without dependence on the deriva-
tion D or even the input u.

The size of a parse tree |T | is the number of nodes in it. Note
that only the parts of a derivation counting towards the successful
match contribute to its parse tree, while failing subderivations are
omitted. This ensures that, for fixed grammars, parse trees have size
proportional to the input. This is in contrast to derivations, which
be of exponential size in the length of the input in the worst case.

Proposition 2.5 (Linear tree complexity). Fix a program P . For all
A ∈ V and u, v ∈ Σ∗ and derivations D :: (A, u)⇒P v we have
|T (D)| = O(|u|).

Parse trees and parse codes both provide injective codings of the
subset of derivations with non-failing results.

Proposition 2.6 (Injectivity). Fix a program P and symbol A ∈ V .
For all u1, u2, v1, v2 ∈ Σ∗ and derivations D1 :: (A, u1) ⇒P v1

and D2 :: (A, u2) ⇒P v2, if D1 6= D2, then TD1 6= TD2 and
CD1 6= CD2 .

It is easy to check that a code can be used to construct the
corresponding parse tree in linear time, regardless of the size of
the underlying derivation. In general, a code can be viewed as an
oracle that guides a leftmost derivation of the start symbol S to
match the input string. Any prefix of a code can thus be seen as
a partially expanded parse tree. During expansion, we maintain a
stack of nodes that are not yet expanded. If the top node is simple
it can be expanded deterministically, and if it is complex the next
code symbol determines its expansion; its child nodes are pushed
on the stack.

Example 1. Consider the PEG program S←(a∗b/ε)a∗, which
desugars into:

S←L[R,F ] L←P [E,E] P←A[P,B] R←A[R,E]

A←a B←b E←ε F←f



We have derivations D :: (S, aa) ⇒ ε and D′ :: (S, aaba) ⇒ ε.
Visualized below is, from left to right: the trees TD , TD′ , and the
partial tree expanded from the prefix 000 of the code CD′ . The
leftmost nonterminal leaf is the next to be expanded.
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The parse codes are CD = 01001 and CD′ = 0000101, respectively.
Observe that codes correspond to the subscripts of the internal nodes
in the order they would be visited by an in-order traversal, reflecting
the leftmost expansion order.

2.3 Streaming Parsing
Using parse codes, we can define streaming parsing.

Definition 4 (Streaming parsing function). Let # 6∈ Σ be a special
end-of-input marker. A streaming parsing function for a program
P is a function f : Σ∗(# ∪ ε)→ 2∗ which for every input prefix
u ∈ Σ∗ satisfies the following:

1. it is monotone: For all v ∈ Σ∗, f(uv) = f(u)c′ for some
c′ ∈ 2∗.

2. it computes code prefixes: For all v ∈ Σ∗ and matching
derivations D :: (A, uv) ⇒P w (w ∈ Σ∗), we have CD =
f(u)c′ for some c′ ∈ 2∗.

3. it completes the code: if there exists a matching derivation
D :: (A, u)⇒P w, then CD = f(u#).

In this paper, we develop an algorithm which implements a
streaming parsing function as defined above. The code prefix pro-
duced allows consumers to perform parsing actions (e.g. construc-
tion of syntax trees, evaluation of expressions, printing, etc.) before
all of the input string has been consumed. Monotonicity ensures that
no actions will have to be “un-done”, with the caveat that further
input might cause the whole parse to be rejected.

3. Tabulation of Operational Semantics
In the following we fix a program P = (Σ, V, S,R).

We will be working with various constructions defined as least
fixed points of monotone operators on partially ordered sets. A
partial order is a pair (X,v) where X is a set and v is a reflexive,
transitive and antisymmetric relation on X . Given two elements
x, y ∈ X , we will write x @ y when x v y and x 6= y.

For any set X , let X⊥ be X ] {⊥} with the partial order x @ y
if and only if x = ⊥. A table with X-entries is a |P | × N0 matrix
T where each entry Tij is in X⊥, and indices (i, j) are in the set
Index = {(i, j) | 0 ≤ i < |P | ∧ 0 ≤ j}. The set of all tables on
X is denoted Table(X), and forms a partial order (Table(X),v)
by comparing entries pointwise: for T, T ′ ∈ Table(X), we write
T v T ′ iff for all (i, j) ∈ Index, we have Tij v T ′ij . Write
⊥ ∈ Table(X) for the table with all entries equal to ⊥ ∈ X⊥. It is
easy to verify that the partial order on Table(X) has the following
structure:

complete partial order: For all chains T0 v T1 v ... where
Ti ∈ Table(X), i ∈ {0, 1, ...}, the least upper bound

⊔
i Ti

exists.

meet-semilattice: For all non-empty subsets S ⊆ Table(X), the
greatest lower bound

d
S exists.

A function F : Table(X)→ Table(X) is said to be continuous
if it preserves least upper bounds of chains: For all S ⊆ Table(X),
we have F (

⊔
S) =

⊔
T∈S F (T ). A continuous function is mono-

tonicc: T v T ′ implies F (T ) v F (T ′). A least fixed point of F
is an element T such that F (T ) = T (T is a fixed point) and also
T v T ′ for all fixed points T ′. A general property of complete
partial orders is that if F is a continuous function then its least fixed
point lfpF exists and is given by

lfpF =
⊔
n

Fn(⊥)

where Fn is the n-fold composition of F with itself. We will also
rely on the following generalization:

Lemma 3.1 (Lower bound iteration). If T v lfpF , then lfpF =⊔
n F

n(T ).

3.1 Parse Tables
We now recall the parse table used in the dynamic programming
algorithm for linear time recognition [1], but presented here as a
least fixed point. The table has entries from Res = N0 + {f}, that
is, either a natural number or f indicating failure. Given a finite
(respectively, infinite) string w = a0a1...an−1 (w = a0a1...), and
an offset 0 ≤ j < n (0 ≤ j), write uj for the suffix ajaj+1...an−1

(ajaj+1...) obtained by skipping the first j symbols.

Definition 5 (Parse table). Let u ∈ Σ∗. Define a table operator Fu

on Table(Res) as follows. Let w = u#ω , the infinite string starting
with u followed by an infinite number of repetitions of the end
marker # 6∈ Σ. For any table T ∈ Table(Res) define Fu(T ) = T ′

such that for all (i, j) ∈ Index:

T ′ij =



f Ai←f or Ai←a and a not a prefix of wj

1 Ai←a and a is a prefix of wj

0 Ai←ε
m+m′ Ai←Ax[Ay, Az] ∧ Txj = m ∧ Ty(j+m) = m′

f Ai←Ax[Ay, Az] ∧ Txj = m ∧ Ty(j+m) = f

Tzj Ai←Ax[Ay, Az] ∧ Txj = f

⊥ otherwise

The operator Fu is easily seen to be continuous, and we define
the parse table for u by T (u) = lfpFu.

For any u ∈ Σ∗, the table T (u) is a tabulation of all parsing
results on all suffixes of u:

Theorem 3.2 (Fundamental theorem). Let u ∈ Σ∗ and consider
T (u) as defined above. For all (i, j) ∈ Index:

1. j ≤ |u| and T (u)ij = f iff (Ai, uj)⇒P f; and
2. j ≤ |u| and T (u)ij = m ∈ N0 iff (Ai, uj)⇒P uj+m; and
3. j ≤ |u| and T (u)ij = ⊥ iff (Ai, uj) 6⇒P ;
4. if j > |u| then Tij = Ti|u|

The converse also holds: for any T satisfying the above, we have
T = T (u).

Property 4 is sufficient to ensure that all parse tables have a
finitary representation of size |P | × |u|. It is straightforward to
extract a parse code from T (u) by applying Definition 3 and the
theorem.



Example 2. Consider the program P from Example 1. The tables
T = T (aa) and T ′ = T (aaba) are shown below:

0 1 2 · · ·
a a # · · ·

A 1 1 f

· · ·

B f f f
E 0 0 0
F f f f
L 0 0 0
P f f f
R 2 1 0
S 2 1 0

0 1 2 3 4 · · ·
a a b a # · · ·

A 1 1 f 1 f

· · ·

B f f 1 f f
E 0 0 0 0 0
F f f f f f
L 3 2 1 0 0
P 3 2 1 f f
R 2 1 0 1 0
S 4 3 2 1 0

Note that columns 1,2 in the left table equals columns 3,4 in the
right table. In general, columns depend on the corresponding input
suffix but are independent of the previous columns. This is a simple
consequence of Theorem 3.2.

For a table T and m ∈ N0, let T [m] be the table obtained by
removing the first m columns from T , i.e. T [m]ij = Ti(j+m).

Corollary 3.3 (Independence). Let u ∈ Σ∗. For all 0 ≤ m, we
have T (u)[m] = T (um).

Proof. By Theorem 3.2. For example, if T (u)i(j+m) = m′ for
some m′ then (Ai, uj+m)⇒ uj+m+m′ . Have (um)j = um+j , so
(Ai, (um)j)⇒ (um)j+m′ , and therefore T (um)ij = m′.

Independence leads to the linear-time O(|P |2n) parsing algo-
rithm of Aho and Ullman. For input u with |u| = n, compute T (u)
column by column, starting from the right. In each step j ≤ n, com-
pute column j by fixed point iteration of Fuj on the current table
state. Since T (u)[j + 1] = T (uj+1) is given by induction, only
the |P | entries in column j need to be processed. Naive fixed-point
iteration will reach a fixed point inO(|P |) substeps, each computing
|P | entries, leading to the constant factor O(|P |2).

4. Streaming Parsing with Tables
The linear-time parsing algorithm has asymptotically optimal time
complexity. However, it always uses space linear in the length of
the input string, since all columns of the parse table have to be
computed before the final result can be obtained. For large grammars
and inputs, this can be prohibitively expensive. In the following we
describe a method for computing only an initial part of the table. The
initial columns will in some cases provide enough information to
construct a prefix of the parse code and allow us to continue parsing
with a smaller table, saving space.

Let us illustrate the idea by an example. Let w = uv be an input
string, and let Ai←Ax[Ay, Az] be a rule in the program. Suppose
that by analyzing only the prefix u, we can conclude that there is
a constant m such that T (uv′)x0 = m for all v′. In particular, this
holds for v′ = v, so T (w)i0 ∈ N0 if and only if T (w)i0 = m+m′

where m′ = T (w)ym = T (w)[m]y0 = T (wm)y0 (the last
equation follows by independence). By examining only the prefix
u, we have thus determined that the result only depends on T (wm),
freeing up m columns of table space. The process can be repeated
for the remaining input wm.

We will need an analysis that can predict results as described.
The theoretically optimal analysis is defined as follows:

Definition 6 (Optimal prefix table). Let u ∈ Σ∗, and define the op-
timal prefix table Tu(u) ∈ Table(Res) as the largest approximation
of all the complete tables for all extensions of u:

Tu(u) =
l

v∈Σ∗

T (uv)

Theorem 4.1. For all u, i, j:

1. if Tu(u)ij 6= ⊥ then ∀v. T (uv)ij = Tu(u)ij;
2. if (∀v. T (uv)ij = r 6= ⊥), then Tu(u)ij = r.

Unfortunately, we cannot use this for parsing, as the optimal
prefix table is too precise to be computable:

Theorem 4.2. There is no procedure which computes Tu(u) for
all GTDPLs P and input prefixes u.

Proof. Assume otherwise that Tu(u) is computable for any u and
GTDPL P . Then L(P ) = ∅ iff Tu(ε)iS ,0 = f. Hence emptiness is
decidable, a contradiction by Proposition 2.3.

A conservative and computable approximation of Tu can easily
be defined as a least fixed point. Given a table operator F and a
subset J ⊆ Index define a restricted operator FJ by

FJ(T )ij =

{
F (T )ij if (i, j) ∈ J
Tij otherwise

If J = {(p, q)} is a singleton, write Fpq for FJ . Clearly, if F is
continuous then so is FJ .

For any u ∈ Σ∗, define an operator F (u) by F (u) = Fu
Ju

where
Ju = {(i, j) ∈ Index | j < |u|}. The prefix table for u is the least
fixed point of this operator:

T<(u) = lfpF (u)

Intuitively, a prefix table contains as much information as can
be determined without depending on column |u|. Prefix tables are
clearly computable by virtue of being least fixed points, and properly
approximate the optimal analysis:

Theorem 4.3 (Approximation). For all u ∈ Σ∗, we have T<(u) v
Tu(u). In particular, if T<(u)ij = m or T<(u)ij = f, then
∀v. T (uv)ij = m or ∀v. T (uv)ij = f, respectively.

Prefix tables become better approximations as the input prefix is
extended:

Proposition 4.4 (Prefix monotonicity). For all u, v ∈ Σ∗, we have
T<(u) v T<(uv).

We will make use of this property and Lemma 3.1 to efficiently
compute prefix tables in an incremental fashion.

The full parse table can be recovered as a prefix table if we just
append an explicit end marker to the input string:

Proposition 4.5 (End marker). For all u ∈ Σ∗ and (i, j) ∈ Index,
if j ≤ |u| then T<(u#)ij = T (u)ij .

Independence carries over to prefix tables. For all u ∈ Σ∗ and
m ≥ 0, we thus have T<(u)[m] = T<(um).

4.1 Streaming Code Construction
The resolved entries of a prefix table can be used to guide a partial
leftmost expansion of a parse tree. We model this expansion process
by a labeled transition system which generates the corresponding
parse code. By constructing the expansion such that it is a prefix of
all viable expansions, the parse code can be computed in a streaming
fashion. In order to determine as much of the parse code as possible,
we can commit to the continuation branch when a dynamic analysis
determines that the failure branch must fail.

Definition 7 (Leftmost parse tree expansion). Let T ∈ Table(Res)
be a table and d ∈ N0 a speculation constant. Define a labeled
transition system ET = (Q,E) with states Q = V ∗ × N0 and
transitions E ⊆ {q c→ q′ | c ∈ 2∗; q, q′ ∈ Q}. Let E be the
smallest set such that for all Ai ∈ V , ~K ∈ V ∗ and j ∈ N0:



1. If Ai←Ax[Ay, Az]; and either Txj ∈ N0 or (Az
~K, j) failsd ,

then:
(Ai

~K, j)
0→ (AxAy

~K, j) ∈ E
2. If Ai←Ax[Ay, Az]; and Txj = f, then:

(Ai
~K, j)

1→ (Az
~K, j) ∈ E

3. If Ai←ε or Ai←a; and Tij = m, then:

(Ai
~K, j)

ε→ ( ~K, j +m) ∈ E

4. If q c→ q′ ∈ E and q′ c′→ q′′, then: q cc′→ q′′ ∈ E.

where for all ~K, j, n, write ( ~K, j) failsn if ~K = Ai
~K′ and either

1. Tij = f; or
2. Tij = m, n = n′ + 1 and ( ~K′, j +m) failsn′ .

A state encodes the input offset and the stack of leaves that
remain unexpanded. The node on the top of the stack is expanded
upon a transition to the next state, with the expansion choice
indicated in the label of the transition. The system is deterministic
in the sense that every state can step to at most one other state in a
single step (the label is determined by the source state).

The highlighted disjunct allows us to speculatively resolve a
choice as succeeding when the failure branch is guaranteed to fail.
This is determined by examining the table entries for at most d
nonterminals on the current stack ~K.

Example 3. The partial parse tree of Example 1 corresponds to the
following steps in ET ′ where T ′ is the table from Example 2:

(S, 0)
0→ (LR, 0)

0→ (PER, 0)
0→ (APER, 0)

ε→ (PER, 1)

A state q is quiescent if there is no transition from it. Say that q
is convergent and write q c→ q′ ↓ if either there is a path q c→ q′

such that q′ quiescent; or, q is already quiescent and q′ = q and
c = ε. Clearly, if such c and q′ exists, then they are unique and can
be effectively determined. Otherwise, we say that q is divergent.

Expansions compute coded (matching) derivations in full parse
tables:

Proposition 4.6. Let u ∈ Σ∗ and consider the system ET (u).

1. There is a derivation D :: (A, u) ⇒P um with c = CD if and
only if (A, 0)

c→ (ε,m) ↓.
2. We have (A, u)⇒p f if and only if (A, 0) failsn for some n.

It follows that a state (A, 0) is only divergent if the input is
unhandled:

Proposition 4.7. Let u ∈ Σ∗ and consider the system ET (u). Then
(A, u) 6⇒P if and only if (A, 0) is divergent.

Hence, if P is complete, then every state is convergent in ET (u),
and the relation q c→ q′ ↓ becomes a total function q 7→ (c, q′).

The function associating every input prefix u with the code
c given by (S, 0)

c→ q′ ↓ in the system ET<(u) is a streaming
parse function as per Definition 4. This is ensured by the following
sufficient condition, which states that expansions never “change
direction” as the underlying table is refined:

Proposition 4.8. If T v T ′ and ( ~K, j)
c→ ( ~K′, j′) is in ET , then

either ( ~K, j)
c→ ( ~K′, j′) is in ET ′ or ( ~K, j) fails in ET ′ .

Expansions also never backtrack in the input, that is, if ( ~K, j)
c→

( ~K′, j′) then j ≤ j′. This allows us to discard the initial columns
of a table as we derive a leftmost expansion:

Proposition 4.9. Let T be a table. Then ( ~K,m)
c→ ( ~K′, n) in ET

if and only if ( ~K, 0)
c→ ( ~K′, n−m) in ET [m].

4.2 Progressive Tabular Parsing
Assume that P is a complete program. We use the constructions
of this section to define our progressive tabular parsing procedure.
The algorithmic issues of space and time complexity will not be of
our concern yet, but will we be adressed in the following section.

Given an input string with end marker w# = a0a1...an−1

(an−1 = #), the procedure decides whether there exists a matching
derivation D :: (S,w)⇒P wk, and in that case produces CD in a
streaming fashion. In each step 0 ≤ k ≤ n, we compute a table
T k ∈ Table(Res), a stack ~Kk, an offset mk ≤ k and a code chunk
ck ∈ 2∗. Upon termination, we will have CD = c0c1...cn.

Initially T 0 = T<(ε), ~K0 = S, m0 = 0 and c0 = ε. For each
1 ≤ k ≤ n, the values T k, ~Kk,mk and ck are obtained by

T k = T<(amk−1 ...ak−1)

mk = mk−1 +m′ where ( ~Kk−1, 0)
ck→ ( ~Kk,m′) ↓

Since P is complete, we have by Proposition 4.7 that the last line
above can be resolved. If ~Kn = ε, then accept; otherwise reject.

Theorem 4.10. The procedure computes CD iff there is a derivation
D :: (S,w)⇒P wk.

Proof. We claim that after each step k, we have (S, 0)
c0...ck→

( ~Kk,mk) ↓ in ET (w). This holds for k = 0, as (S, 0) is quies-
cent. For k > 0, we assume that it holds for k − 1 and must

show ( ~Kk−1,mk−1)
ck→ ( ~Kk,mk) ↓ in ET (w). By construction,

we have a path ( ~Kk−1, 0)
ck→ ( ~Kk,mk−mk−1) in ETk . By Propo-

sition 4.4 and Theorem 4.3, we have T k = T<(amk−1 ...ak−1) v
T<(wmk−1) v T (wmk−1) = T (w)[mk − 1], so by Proposi-
tion 4.8, the path is in ET (w)[mk−1], and by Proposition 4.9, we
obtain our subgoal.

If the procedure accepts the input, then we are done by Proposi-
tion 4.6. If it rejects, it suffices to show that ( ~K,mk) is quiescent in
ET (w) which by Proposition 4.6 implies that there is no matching
derivation. Since Tm = T<(w#), we can apply Proposition 4.5 to
easily show ETm = ET (w), and we are done.

Figure 1 shows an example of a few iterations of the procedure
applied to the program in Example 1.

In the next section we show that the above procedure can be
performed using linear time and space. Linear space is obtained by
observing that the table T k−1 is no longer needed once T k has been
computed. On the other hand, a linear time guarantee requires careful
design: Computing each table T k using the classical right-to-left
algorithm would take linear time in each step, and hence quadratic
time in total. In the following section, we show how to obtain the
desired time complexity by computing each table incrementally
from the previous one.

5. Algorithm
The streaming parsing procedure of Section 4.2 can be performed
in amortized time O(|w|) (treating the program size as a constant).
We assume that the program P is complete.

Our algorithm computes each prefix table T k using a work set
algorithm for computing fixed points. We save work by starting
the computation from T k−1[mk−1] instead of the empty table
⊥. In order to avoid unnecessary processing, an auxiliary data
structure is used to determine exactly those entries which have
enough information available to be resolved. This structure itself
can be maintained in constant time per step. Since at most O(|w|)
unique entries need to be resolved over the course of parsing w, this
is also the time complexity of the algorithm.



(1) a

A 1
B f
E 0
F f
L ⊥
P ⊥
R ⊥
S ⊥

(2) a a

A 1 1
B f f
E 0 0
F f f
L ⊥ ⊥
P ⊥ ⊥
R ⊥ ⊥
S ⊥ ⊥

(3) a a b

A 1 1 f ⊥
B f f 1 ⊥
E 0 0 0 ⊥
F f f f ⊥
L ⊥ ⊥ ⊥ ⊥
P 3 2 1 ⊥
R 2 1 0 ⊥
S ⊥ ⊥ ⊥ ⊥

(4) a a b a

A 1 1 f 1 ⊥
B f f 1 f ⊥
E 0 0 0 0 ⊥
F f f f f ⊥
L ⊥ ⊥ ⊥ ⊥ ⊥
P 3 2 1 ⊥ ⊥
R 2 1 0 ⊥ ⊥
S ⊥ ⊥ ⊥ ⊥ ⊥

(5) a a b a #

A 1 1 f 1 f
B f f 1 f f
E 0 0 0 0 0
F f f f f f
L ⊥ ⊥ ⊥ ⊥ 0
P 3 2 1 ⊥ f
R 2 1 0 ⊥ 0
S ⊥ ⊥ ⊥ ⊥ 0

(1) : (S, aaba#)
0→ (LR, aaba#)

(2) : (LR, aaba#)

(3) : (LR, aaba#)
0→ (PER, aaba#)

0→ (APER, aaba#)→ (PER, aba#)
0→ (APER, aba#)→ (PER, ba#)

1→ (BER, ba#)→ (ER, a#)

(4) : (ER, a#)→ (R, a#)
0→ (AR, a#)→ (R,#)

(5) : (R,#)
1→ (E,#)→ (ε,#)

Figure 1. At the top are the five consecutive tables constructed during parsing of input w = aaba, using the program from Example 1. Only
the columns to the right of the dashed line have to be stored for the next iteration. Newly computed entries are colored; entries considered by
the expansion process are written in bold face. The progression of the leftmost expansion is shown below.

Algorithm 1 (PARSE).
In: w = a0a1...a|w|−1 ∈ Σ∗#.
Out: Code c0c1...c|w|−1, accept/reject.

1: u := ε
2: T := ⊥
3: ~K := S
4: R := (i, j) 7→ ∅
5: for k ∈ {1, ..., |w|} do
6: u := u ak−1

7: run FIX
8: compute ( ~K, 0)

c→ ( ~K′,m′) ↓
9: cn := c

10: ~K := ~K′

11: T := T [m′]
12: R := R[m′]

13: accept if ~K = ε else reject

Algorithm 2 (FIX).
Precondition:
u = am...ak−1

T = T<(am...ak−2) ∧R = (DT )−1

Postcondition:
u = am...ak−1

T = T<(u) ∧R = (DT )−1

1: W := {(i, |u| − 1) | gi simple}
2: while W 6= ∅ do
3: let (p, q) ∈W
4: T := F

(u)
pq (T )

5: W := W \ {(p, q)} ∪Rpq

6: for i′ ∈ C−1
p do

7: let (k, `) = DT
i′q

8: Rk` := Rk` ∪ {(i′, q)}
9: if Tk` 6= ⊥ then

10: W := W ∪ {(i′, q)}

Reverse condition map

C−1 : |P | → 2|P |

C−1
x = {i ∈ |P | | Ai←Ax[Ay, Az]}

Dynamic (reverse) dependency map

D : Table× Index→ Index⊥

DT
ij =


(y, j +m) if Ai←Ax[Ay, Az] ∧ Txj = m

(z, j) if Ai←Ax[Ay, Az] ∧ Txj = f

⊥ otherwise

(DT )−1
k` = {(i, j) | DT

ij = (k, `)}
Restrictions

T [m]ij = Ti(m+j)

R[m]k` = {(i, j −m) | (i, j) ∈ Rk(m+`) ∧ j ≥ m}

Figure 2. Parsing algorithm.

The algorithm is presented in two parts in Figure 2. Algorithm 1
(PARSE) takes as input a #-terminated input stream and maintains
two structures: A table structure T which incrementally gets updated
to represent T<(u) for a varying substring u = amk−1 ...ak−1; and
a mapRwhich keeps track of reverse data dependencies between the
entries in T . In each iteration, any resolved code prefix is returned
and the corresponding table columns freed. The main work is done
in Algorithm 2 (FIX) which updates T and R to represent the next
prefix table and its reverse dependencies, respectively.

5.1 Work Sets
Let T be a table such that T v T<(u) for some prefix u. The work
set ∆u(T ) ⊆ Index consists of all indices of entries that can be
updated to bring T closer to T<(u) by applying F (u):

∆u(T ) = {(i, j) | Tij @ F (u)(T )ij}.

It should be clear that T = T<(u) iff ∆u(T ) = ∅, and that
for all (p, q) ∈ ∆u(T ), we still have F (u)

pq (T ) v T<(u) for the
updated table. In the following we show how ∆u(F

(u)
pq (T )) can be

obtained from ∆u(T ) instead of recomputing it from scratch.

5.2 Dependencies
In order to determine the effect of table updates on the work set, we
need to make some observations about the dependencies between
table entries.

Consider an index (i, j) such that Ai←Ax[Ay, Az] and Tij =
⊥. The index (i, j) cannot be in the work set for T unless either
Txj = m and Ty(j+m) 6= ⊥; or Txj = f and Tzj 6= ⊥. We say
that (i, j) conditions on (x, j). The reverse condition map C−1 in
Figure 2 associates every row index x with the set of row indices
i ∈ C−1

x such that (i, j) conditions on (x, j) for all j.
If Txj = m or Txj = f then (i, j) is in the work set iff

Ty(j+m) 6= ⊥ or Tzj 6= ⊥, respectively. In either case, we say that
(i, j) has a dynamic dependency on (y, j+m) or (z, j), respectively.
The dependency is dynamic since it varies based on the value of
Txj . The partial map D : Table(Res)× Index → Index⊥ defined
in Figure 2 associates every index (i, j) with its unique dynamic
dependency DT

ij in table T . The dynamic dependency is undefined
(⊥) if the condition is unresolved or if the corresponding expression
gi is simple (recall that complex expressions are of the formA[B,C],
and any other expression is simple).

By the observations above, we can reformulate the work set
using dependencies:



Lemma 5.1 (Work set characterization). For all T we have

∆u(T ) = {(i, j) ∈ Ju | Tij = ⊥
∧ (gi complex⇒ DT

ij 6= ⊥ 6= TDT
ij

)}

5.3 Incremental Work Set Computation

When a table S is updated by computing T = F
(u)
pq (S) for

(p, q) ∈ ∆u(S), Lemma 5.1 tells us that the changes to the work
set can be characterized by considering the entries (i, j) for which
one or more of the values DT

ij and TDT
ij

differ from DS
ij and SDS

ij
,

respectively.
The dependency map gets more defined as we go from S to T :

Lemma 5.2 (Dependency monotonicity). If T v T ′, then for all
(i, j) ∈ Index, we have DT

ij v DT ′
ij .

Using this and the fact that S v T , it is easy to show that we
must have ∆u(T ) ⊇ ∆u(S) \ {(p, q)}. Furthermore, we observe
that (i, j) ∈ ∆u(T ) \ (∆u(S) \ {(p, q)}) iff

1. DS
ij @ DT

ij and TDT
ij
6= ⊥; or

2. DS
ij = DT

ij 6= ⊥ and SDS
ij

@ TDT
ij

.

Since the second case can only be satisfied when DT
ij = (p, q), it

is completely characterized by the reverse dependency set (DT )−1
pq ,

defined in Figure 2. The first case is when (i, j) conditions on (p, q)
(equivalent to DS

ij @ DT
ij) and TDT

ij
6= ⊥. The entries satisfying

the former are completely characterized by the reverse condition
map:

Lemma 5.3 (Dependency difference). Let S ∈ Table(Res) such
that S v T<(u) and (p, q) ∈ ∆u(S), and define T = F

(u)
pq (S).

Then {(i, j) | DS
ij @ DT

ij} = C−1
p × {q}.

By Lemmas 5.1, 5.2 and 5.3, we obtain the following incremental
characterization of the work set:

Lemma 5.4 (Work set update). Let S v F (u)(S) v T<(u),
(p, q) ∈ ∆u(S) and T = F

(u)
pq (S). Then

∆u(T ) = ∆u(S) \ {(p, q)}
∪ (DS)−1

pq

∪ {(i′, q) | i′ ∈ C−1
p ∧ ⊥ 6= TDT

i′q
}

The extra premise S v F (u)(S) says that every entry in S must
be a consequence of the rules encoded by F (u), and can easily be
shown to be an invariant of our algorithm.

Reverse dependency map lookups (DT )−1
pq cannot easily be

computed efficiently. To accommodate efficient evaluation of these
lookups, the algorithm maintains a data structure R to represent
(DT )−1. The following lemma shows that the loop 6-10 in FIX will
reestablish the invariant that R = (DT )−1:

Lemma 5.5 (Dependency update). Let S v T<(u), (p, q) ∈
∆u(S) and T = F

(u)
pq (S). Then for all (k, `) ∈ Index, we have

(DT )−1
k` = (DS)−1

k` ∪ {(i
′, q) | i′ ∈ C−1

p ∧ (k, `) = DT
i′q}.

5.4 Correctness
Theorem 5.6 (Correctness of FIX). Let FIX be the algorithm in
Figure 2. If the precondition of FIX holds, then the postcondition
holds upon termination.

Proof sketch. We first remark that the algorithm never attempts to
perform an undefined action. It suffices to check that line 3 is
always well-defined, and that Lemma 5.3 implies that the right
of the equation in line 7 is always resolved.

The outer loop maintains that R = (DT )−1 and W = ∆u(T ).
Initially, only the entries in the last column which are associated
with simple expressions can be updated. If S is the state of T at the
beginning of an iteration of loop 2-10, then at the end of the iteration
T will have the form of the right hand side of Lemma 5.4. When the
loop terminates we have W = ∆u(T ) = ∅, so T = T<(u).

Theorem 5.7 (Correctness of PARSE). The algorithm PARSE per-
forms the streaming parsing procedure of Section 4.2.

Proof sketch. After executing lines 1-4, we verify that R =
(DT )−1, and that for k = 0:

T = T<(amk ...ak−1), ~K = ~Kk, u = amk ...ak−1

The loop maintains the invariant: When entering the loop, we
increment k and thus have R = (DT )−1 and

T = T<(amk−1 ...ak−2), ~K = ~Kk−1, u = amk−1...ak−2

After the assignment to u, we have u = amk−1 ...ak−1. By running
FIX, we then obtain T = T<(amk−1 ...ak−1) = T k. By assump-
tion that P is complete, line 8 is computable, and we obtain

~K′ = ~Kk c = ck m′ = mk −mk−1

The last updates in the loop thus reestablishes the invariant.

5.5 Complexity
We give an informal argument for the linear time complexity. Let
d ∈ N0 be the constant from Definition 7 limiting the number of
stack symbols considered when resolving choices.

It can be shown that the three sets on the right hand side of the
equation in Lemma 5.4 are pairwise disjoint; likewise for Lemma 5.5.
We thus never add the same element twice to W and R, meaning
that they can be represented using list data structures, ensuring that
all single-element operations are constant time.

The complexity argument is a simple aggregate analysis. To
see that PARSE runs in linear time, we observe that the work set
invariant ensures that we execute at most O(|u|) iterations of the
loop 2-10 in FIX. We add only unprocessed elements to the work
list, and no element is added twice, so the total number of append
operations performed in lines 5 and 10 is also O(|u|). The same
reasoning applies for the total number of append operations in line
8. The remaining operations in FIX are constant time.

Line 8 in PARSE computes an expansion of aggregate length
O(mn). For each expansion transition, we use at most d steps to
resolve choices, and we thus obtain a bound of O(dmn).

The restriction operator T [m] can be performed in constant time
by moving a pointer. The restriction of the reverse dependency map
R[m] can be implemented in constant time by storing the offset
and lazily performing the offset calculation j −m and filtering by
j ≤ m on lookup.

5.6 Optimization
The algorithm presented above is simple, but as our evaluation will
show, it may compute a large amount of table entries which are
never actually needed. We can avoid this extra work by integrating
the table computation with the expansion process, such that only
those entries that are “forced” by the expansion process are added
to the work set.

Figure 3 shows an optimized version of the algorithm operating
in this fashion. The reverse condition and dependency maps C−1

and R are replaced by the maps R1 and R2. If we run the original
and optimized algorithms in parallel, then after each iteration of
the main loop, we have for all (p, q) ∈ Index that R1

pq ⊆ C−1
p and

R2
pq ⊆ Rpq . A subset Forced ⊆ Index maintains the set of forced

entries. An entry is forced by calling FORCE, which in turn forces



its dependencies and updates the mapsR1 andR2 accordingly. If an
entry which can be resolved immediately is forced, then it is added
to the work set. The algorithm implicitly assumes that the leftmost
expansion calls FORCE(i, j) followed by FIX whenever it needs the
value of an entry Tij .

Correctness follows by verifying that the algorithm computes
correct values for all entries and that all forced entries are resolved
when the original unoptimized algorithm would also resolve them.

6. Evaluation
We have developed a simple prototype implementation for the
purpose of measuring how the number of columns grow and shrink
as the parser proceeds, which gives an indication of both its memory
usage and its ability to resolve choices. The evaluation also reveals
parts of the design which will require further engineering in order
to obtain an efficient implementation. We have not yet developed an
implementation optimized for speed, so a performance comparison
with other tools is reserved for future work.

We consider three programs: a) a simplified JSON parser, b) a
simplified parser for the fragment of statements and arithmetic
expressions of a toy programming language, c) a tail-recursive
program demonstrating a pathological worst-case.

All programs are presented as PEGs for readability. Nonterminals
are underlined, terminals are written in typewriter and a character
class [a...z] is short for a/b/.../z.

JSON Parser We wrote a JSON parser based on a simplification
of the ECMA 404 specification (see http://json.org) and taking
advantage of the repetition operator of PEG. To keep the presentation
uncluttered, we have left out handling of whitespace:

object ← {members }
members ← pair(, pair)∗/ε

pair ← string : value
array ← [ elements ]

elements ← value(, value)∗/ε
value ← string / object / number / array

/true/false/null
string ← "[a...z]∗"

number ← int(frac /ε)(exp /ε)
int ← [1...9] digits /-[1...9] digits /-[0...9]/[0...9]

frac ← . digits
exp ← e digits

digits ← [0...9][0...9]∗

e ← e+/e-/e/E+/E-/E

The desugared program contains 158 rules.
We ran the program on a 364 byte JSON input with several

nesting levels and syntactic constructs exercising all rules. The
resulting parse code is computed in 3530 expansion steps. We would
like to get an idea of how varying values of the speculation constant
d affects the amount of memory consumed and the amount of work
performed. Recall that d specifies the number of stack symbols
considered when determining whether a branch must succeed on
all viable expansions. The results are summarized in the following
table (results stabilize after d = 12):

d max cols complex entries spec. steps
(max 365) (max 39785) (rel. to 3530)

0 362 39773 (99.97%) 0 (0.00%)
2 229 39673 (99.72%) 9 (0.25%)
4 10 35746 (89.85%) 283 (8.02%)
6 10 35625 (89.54%) 312 (8.84%)
8 2 35361 (88.88%) 419 (11.87%)

10 2 35346 (88.84%) 442 (12.52%)
12 2 35214 (88.51%) 453 (12.83%)

The second column shows the maximum number of columns stored
at any point. The worst case is 365, which corresponds to storing
every column for each of the 364 input symbols, and the column for
the end of input marker. We observe that d = 8 results in at most
two columns needing to be stored in memory.

The third column measures the potential work saved as d is
increased by counting the total number of computed entries for
complex expressions. We exclude entries for simple expressions
since they are resolved immediately upon reading the next input
symbol, and can hence be precomputed in an actual implementation.

The fourth column is the number of steps spent evaluating the
( ~K, j) failsn predicate, and the relative number compared to the
number of expansion steps. For this particular program, the overhead
is seen to be very small compared to the reduction in computed
entries and practically constant memory usage.

Memory usage goes from linear to constant when the speculation
constant is increased. On the other hand, the amount of work that
is saved on that account is modest, and the algorithm on average
computes 35214/365 = 96.5 complex entries per input symbol,
which is 88.5% of the full table. However, most entries are never
actually needed by the expansion process. The following table shows
the same program executed with the optimized algorithm:

d max cols complex entries spec. steps
(max 365) (max 39785) (rel. to 3530)

0 362 4173 (10.49%) 0 (0.00%)
2 229 4183 (10.51%) 9 (0.25%)
4 10 3016 (7.58%) 283 (8.02%)
6 10 3008 (7.56%) 312 (8.84%)
8 2 3129 (7.86%) 419 (11.87%)

10 2 3127 (7.86%) 442 (12.52%)
12 2 3077 (7.73%) 453 (12.83%)

The amount of work is now reduced by an order of magnitude, and
we compute on average 3077/365 = 8.4 complex entries per input
symbol.

We also scaled up the input to around 10KiB using repeated
nesting, and ran the optimized algorithm with bound d = 12. The
average number of computed complex entries per input symbol
stayed the same at around 8.5, and so did the number of speculation
steps relative to the number of expansion steps (12.75%).

Statement/Expression Parser The following is inspired by an
example from a paper on ALL(*) [19]. The program parses a
sequence of statements, each terminated by semicolon, with the
whole sequence terminated by a single dot representing an end-
of-program token. Each statement is either a single arithmetic
expression or an assignment.

prog ← stat stat∗ .
stat ← sum = sum ;/ sum ;
sum ← product + sum/ product

product ← factor * product / factor
factor ← id ( sum )/( sum )/ id

id ← [a...z][a...z]∗

Top-down parsing of infix expressions may require unbounded
buffering of the left operand, as the operator itself arrives later in the
input stream. The following shows an input string, and below each
symbol is the size of the parse table right after its consumption:
aj z = f ( z ) ; x = x + y * y * y ; g ( x ) ; . #
size 1 0 1 2 3 4 0 1 0 1 0 1 2 3 4 5 0 1 2 3 4 0 0 1

The speculation constant is unbounded. The example demonstrates
how the method adapts the table size as input is consumed. Note
that ; and = resolves the sum expression currently being parsed,
truncating the table, and also that the left operand of the + symbol is
correctly resolved, while the * expression must be buffered.

http://json.org


Algorithm 3 (PARSE).
In: w = a0a1...a|w|−1 ∈ Σ∗#.
Out: Code c0c1...c|w|−1, accept/reject.

1: u := ε; T := ⊥; ~K := S
2: R1, R2 := (i, j) 7→ ∅
3: Forced := ∅
4: FORCE(S, 0)
5: for k ∈ {1, ..., |w|} do
6: u := u ak−1

7: W := {(i, |u| − 1) | gi simple} ∩ Forced
8: run FIX
9: compute( ~K, 0)

c→ ( ~K′,m′) ↓
where for all i, j, before evaluating Tij :

run FORCE(i, j), then run FIX.
10: cn := c; ~K := ~K′

11: T := T [m′]; R1 := R1[m′]; R2 := R2[m′]

12: accept if ~K = ε else reject

Algorithm 4 (FIX).
1: while W 6= ∅ do
2: let (p, q) ∈W
3: T := F

(u)
pq (T )

4: W := W \ {(p, q)} ∪R2
pq

5: for i′ ∈ R1
p do

6: let (k, `) = DT
i′q

7: R2
k` := R2

k` ∪ {(i′, q)}
8: if Tk` 6= ⊥ then
9: W := W ∪ {(i′, q)}

10: else
11: run FORCE(k, `)

Algorithm 5 (FORCE).
In: (i, j) ∈ Index

1: if (i, j) ∈ Forced then
2: return
3: Forced := Forced ∪ {(i, j)}
4: if Ai←Ax[Ay, Az] then
5: if Txj = ⊥ then
6: R1

xj := R1
xj ∪ {i}

7: run FORCE(x, j)
8: else
9: let (k, `) = DT

ij

10: if Tk` = ⊥ then
11: R2

k` := R2
k` ∪ {(i, j)}

12: run FORCE(k, `)
13: else
14: W := W ∪ {(i, j)}
15: else if j ≤ |u| − 1 then
16: W := W ∪ {(i, j)}

Figure 3. Optimized algorithm which only computes entries needed by the expansion.

Ambiguous Tail-Recursive Programs Any nondeterministic fi-
nite automaton (NFA) can be interpreted as a PEG program by
assigning a nonterminal to each state, and for each state q with
transitions q

a1→ q1, ..., q
an→ qn creating a rule q←a1 q1 /.../an qn.

The ordering of transitions is significant and defines a disambigua-
tion priority. The final state qf is assumed to have no transitions,
and is given the rule qf←ε.

If the NFA contains no ε-loops then its language will coincide
with that of its PEG encoding, which is a complete program
implementing a backtracking depth-first search for an accepting
path. The following shows a simple example of an NFA and its
prioritized interpretation as a PEG:

S T

E

a

a

a
b

S←aS /aT /bE T←aS E←ε

S←P [E,Q] P←A[S, F ]
T←A[S, F ] Q←V [E,W ]
E←ε V←A[T, F ]
F←f W←B[E,F ]
A←a B←b

The NFA is ambiguous, as any string of the form an+2b, n ≥ 0,
can be matched by more than one path from S to E. Nonterminal
T is never invoked, as the production aS covers the production aT ,
meaning that every string accepted by the latter is also accepted by
the former, which has higher priority in the choice.

The example triggers worst-case behavior for our method, which
fails to detect coverage regardless of the speculation bound, resulting
in a table size proportional to the input length. This is obviously
suboptimal, as any regular language can be recognized in constant
space.

In general, our method is unable to resolve a choice for an un-
bounded length of input whenever the program contains a production
of the form Ai←Ax[Ay, Az] such that (i) there is a string u where
(S, 0)

c→ (Ai
~K, j) is in ET<(u); and (ii) there is an infinite number

of strings v1, v2, ... where each vk is a strict prefix of vk+1, and
for all vk, we have T<(uvk)xj = ⊥ and (Az

~K, j) failsd is not
provable for any d. Tail-recursive programs have this property iff
either the underlying NFA recognizes an infinite number of strings
ambiguously; or it contains a state from which an infinite language
can be accepted while a common prefix of the language is accepted
via a lower priority transition. Determinizing the NFA and making

sure that no accepting state has outgoing transitions yields a fully
streaming program, albeit with very different parse trees.

7. Discussion
The workset algorithm is an instance of chaotic iteration [5] for
computing limits of finite iterations of monotone functions. Our
parsing formalism goes back to the TS/TDPL formalism introduced
by Birman and Ullman [3] and later generalized to GTDPL by Aho
and Ullman [1]. They also present the linear-time tabular parsing
technique and show that GTDPL can express recognizers for all
deterministic context-free languages, including all deterministic LR-
class languages. On the other hand, there are context-free languages
that cannot be recognised by GTDPL if matrix multiplication re-
quires super-linear time [14]. Ford’s Parsing Expression Grammars
(PEG) [8] have the same recognition power as GTDPL, albeit using
a larger set of operators which arguably are better for practical use.

Packrat [7] implements the PEG operational semantics with
memoization, and can be viewed as “sparse” tabular parsing where
only the entries encountered on a depth-first search for an expansion
are computed. Our optimized algorithm is a generalization of Packrat
which operates in lockstep and explores alternative paths in parallel.

Heuristic approaches include Kuramitsu’s Elastic Packrat algo-
rithm [13] and Redziejowski’s parser generator Mouse [21], both
of which are Packrat parsers using memory bounded by a config-
urable constant. Both approaches risk triggering exponential be-
havior when backtracking exceeds the bounds of their configured
constants, which however seems rare in practice. A disadvantage of
heuristic memory reductions is that they have to store the full input
string until the full parse is resolved, because they cannot guarantee
that the parser will not backtrack.

Packrat With Static Cut Annotations Mizushima, Maeda and
Yamaguchi observe that when Packrat has no failure continuations
on the stack, all table columns whose indices are less than the index
of the current symbol can be removed from memory. To increase the
likelihood of this, they extend PEG with cut operators à la Prolog
to “cut away” failure continuations, and also devise a technique for
sound automatic cut insertion, i.e. without changing the recognized
language [18]. Manually inserted cuts yield significant reductions in
heap usage and increases in throughput, but automatic cut insertion
seems to miss several opportunities for optimization. Redziejowski
further develops the theory of cut insertion and identifies sufficient
conditions for soundness, but notes that automation is difficult: “It



appears that finding cut points in non-LL(1) grammars must to a
large extent be done manually” [22].

The method of Mizushima et al. is subsumed by PTP. An empty
stack of failure continuations corresponds to the case where the
condition A in a top-level choice A[B,C] is resolved. Insertion
of cuts is the same as refactoring the grammar using the GTDPL
operator A[B,C], which is the cut operator A ↑ B/C in disguise.
Increasing the speculation bound can achieve constant memory use
without requiring any refactoring of the program.

To illustrate, consider the program S←(a/b)∗/(a∗b∗c∗). PTP
detects that the right alternative cannot succeed as soon as it has
seen an input prefix of the form ambna for somem,n ≥ 1. In order
for the method by Mizushima et al. to obtain the same, cuts have to
be inserted as follows: S←(!!(aa∗bb∗a))↑(a/b)∗/(a∗b∗c∗). The
double negation (!!e) functions as a positive lookahead operator
which succeeds consuming the empty string only if e matches a
prefix of the input. Manual cut insertion is non-trivial and decreases
the readability of the grammar. Furthermore, as noted above, it is
unlikely that an automatic analysis will be able to reliably infer
all cuts needed in practice. Postponing the analysis to parse time,
avoids the need for static analysis altogether.

Cost vs Benefit of Memoization Several authors argue that the
cost of saving parse results outweighs its benefits in practice [2; 11].
The PEG implementation for the Lua language [11] uses a back-
tracking parsing machine instead of Packrat to avoid the memory
cost [15]. Becket and Somogyi compare the performances of Pack-
rat parsers with and without memoization using a parser for Java
as a benchmark [2]. Their results show that full memoization is al-
ways much slower than plain recursive descent parsing, which never
triggered the exponential worst case, and that performance only
increased when just a few selected nonterminals were memoized.
Memoization did thus not serve as an optimization, but rather as a
safeguard against rare pathological worst-case scenarios. However,
another experiment by Redziejowki for the C language shows a
significant overhead due to backtracking which could not be elimi-
nated by memoizing a limited number of nonterminals, but required
manual rewriting of the grammar [20].

Our technique uses full tabulation rather than memoization, but
the above results still suggests that a direct implementation will
likely be slower than plain recursive descent parsers on common
inputs and carefully constructed grammars. However, ad-hoc parsers
cannot be expected to always be constructed in such an optimal way.
Furthermore, our best-case memory usage—which is bounded—
outperforms recursive descent parsers which must store the complete
input string in case of backtracking. This is crucial in the case of
huge or infinite input strings which cannot fit in memory, e.g. logging
data, streaming protocols or very large data files.

Parsing Using Regular Expressions Medeiros, Mascarenhas and
Ierusalimschy embed backtracking regular expression matching in
PEG [16]. As we also demonstrate, backtracking regular expression
matching can be simulated by tail-recursive PEGs, but may result
in worst-case behavior since our method being unable to detect
coverage. Coverage is undecidable for PEG in general, but is
decidable for regular grammars [10].

Grathwohl, Henglein and Rasmussen give a streaming regular
expression parsing technique with optimal coverage analysis [10].
With Søholm and Tørholm they develop Kleenex which compiles
grammars for regular languages into high-performance streaming
parsers with backtracking semantics [9]. Since PEGs combine
lexical and syntactic analysis, they can be expected to contain
many regular fragments. Perhaps the technique of Kleenex can
be combined with PTP to obtain better performance.

General CFG parsing As noted, general CFG parsing is unlikely
to be doable in worst-case (quasi-)linear time as is the case for

PEGs. The classical technique by Cocke, Kasami and Younger [4;
12; 27] is a bottom-up dynamic programming algorithm requiring
O(n3) time and, in practice often prohibitive, Θ(n2) randomly
accessed memory. Earley’s parser [6] has the same time bound,
but processes the input reactively in increasing index order, but
also requiring Θ(n2) randomly accessed data for the prefix read. A
fascinatingly simple reactive parser for CFGs constructs derivatives,
grammar representations of the remaining language to be accepted
after processing a prefix of the input [17]. GLR [26] and GLL
parsers [23] extend bottom-up LR-parsing, respectively top-down
LL-parsing, to general CFGs by building compact data structures
representing multiple stacks for multiple ambiguous parses. Their
main advantage is that they support streaming input processing and
adapt their run-time to the degree of local nondeterminism present
in a grammar. They share with progressive tabling the strategy of
eagerly building parse candidates with zero lookahead. As such
they are highly reactive to the arrival of input symbols and execute
embedded semantic actions prior to reading (much) additional
input. Analyzing some lookahead to locally disambiguate and avoid
building unnecessary parse candidates may yield substantial run-
time benefits, however [19; 9].

PEGs are context-free grammars with a built-in disambiguation
strategy that goes beyond mere disambiguation by not even accept-
ing some strings that have a context-free parse. This corresponds
to the difference between a combinatory parser over the list func-
tor [25; 24] for CFGs versus one over the Maybe functor for PEGs
for representing parse continuations. At a high (and hazy) level, both
GLR/GLL and progressive tabling devise compact run-time repre-
sentations with shared information across alternative continuations
and executing multiple continuations breadth-first (reactively) rather
than depth-first, while still doing this without eagerly computing
more than necessary for a particular input.

8. Conclusion
We have presented PTP, a new streaming execution model for the
TDPL family of recursive descent parsers with limited backtracking,
together with a linear-time algorithm for computing progressive
tables and a dynamic analysis for improving the streaming behavior
of the resulting parsers. We have also demonstrated that parsers for
both LL and non-LL languages automatically adapt their memory
usage based on the amount of lookahead necessary to resolve
choices.

A practical performance-oriented implementation will be crucial
in order to get a better idea of the applicability of our method.
Our prototype evaluation suggests that such an implementation will
perform well if based on our optimized algorithm.

Our method fails to be streaming when applied to strictly right-
regular grammars. This problem has to be resolved in order to avoid
pathological worst cases when developing scannerless parsers, and
is future work.

We believe that our method will be useful in scenarios where a
streaming parse is desired, either because all of the input is not yet
available, or because it is too large to store in memory at once. Fur-
thermore, it can serve as an alternative to Packrat in scenarios where
its memory consumption is too high. Possible applications include
read-eval-print-loops, implementation of streaming protocols and
processing of huge structured data files.
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